Machine learning and financial big data control using IoT

Author:

Xiao Jian

Abstract

Machine learning algorithms have been widely used in risk prediction management systems for financial data. Early warning and control of financial risks are important areas of corporate investment decision-making, which can effectively reduce investment risks and ensure companies’ stable development. With the development of the Internet of Things, enterprises’ financial information is obtained through various intelligent devices in the enterprise financial system. Big data provides high-quality services for the economy and society in the high-tech era of information. However, the amount of financial data is large, complex and variable, so the analysis of financial data has huge difficulties, and with the in-depth application of machine learning algorithms, its shortcomings are gradually exposed. To this end, this paper collects the financial data of a listed group from 2005 to 2020, and conducts data preprocessing and Feature selection, including removing missing values, Outlier and unrelated items. Next, these data are divided into a training set and a testing set, where the training set data is used for model training and the testing set data is used to evaluate the performance of the model. Three methods are used to build and compare data control models, which are based on machine learning algorithm, based on deep learning network and the model based on artificial intelligence and Big data technology proposed in this paper. In terms of risk event prediction comparison, this paper selects two indicators to measure the performance of the model: accuracy and Mean squared error (MSE). Accuracy reflects the predictive ability of the model, which is the proportion of all correctly predicted samples to the total sample size. Mean squared error is used to evaluate the accuracy and error of the model, that is, the square of the Average absolute deviation between the predicted value and the true value. In this paper, the prediction results of the three methods are compared with the actual values, and their accuracy and Mean squared error are obtained and compared. The experimental results show that the model based on artificial intelligence and Big data technology proposed in this paper has higher accuracy and smaller Mean squared error than the other two models, and can achieve 90% accuracy in risk event prediction, which proves that it has higher ability in controlling financial data risk.

Publisher

IOS Press

Subject

Artificial Intelligence,Computer Vision and Pattern Recognition,Human-Computer Interaction,Software

Reference23 articles.

1. Data Science: Big Data, Machine Learning, and Artificial Intelligence;Carlos;Journal of the American College of Radiology,2018

2. Analysis on Financial Risk Control of Network Financing Platform – Based on the Case of Honglingchuangtou;Zhang;Open Access Library Journal,2018

3. Big data analysis with artificial intelligence technology based on machine learning algorithm;Zhang;Journal of Intelligent and Fuzzy Systems,2020

4. Unstructured big data analysis algorithm and simulation of Internet of Things based on machine learning;Hou;Neural Computing and Applications,2020

5. Machine Learning Tools and Toolkits in the Exploration of Big Data;Khan;International Journal of Computer Sciences and Engineering,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3