Influence of Subject-Specific Effects in Longitudinal Modelling of Cognitive Decline in Alzheimer’s Disease

Author:

Murchison Charles F.12,Jaeger Byron C.3,Szychowski Jeff M.1,Cutter Gary R.1,Roberson Erik D.24,Kennedy Richard E.25

Affiliation:

1. Department of Biostatistics, Ryals School of Public Health, University of Alabama at Birmingham, Birmingham, AL, USA

2. Alzheimer’s Disease Research Center, Department of Neurology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA

3. Department of Biostatistics and Data Science, School of Medicine, Wake Forest University, Winston-Salem, NC, USA

4. Center for Neurodegeneration and Experimental Therapeutics, Department of Neurobiology, Heersink School of Medicine, Birmingham, AL, USA

5. Integrative Center for Aging Research, Department of Medicine, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA

Abstract

Background: Accurate longitudinal modelling of cognitive decline is a major goal of Alzheimer’s disease and related dementia (ADRD) research. However, the impact of subject-specific effects is not well characterized and may have implications for data generation and prediction. Objective: This study seeks to address the impact of subject-specific effects, which are a less well-characterized aspect of ADRD cognitive decline, as measured by the Alzheimer’s Disease Assessment Scale’s Cognitive Subscale (ADAS-Cog). Methods: Prediction errors and biases for the ADAS-Cog subscale were evaluated when using only population-level effects, robust imputation of subject-specific effects using model covariances, and directly known individual-level effects fit during modelling as a natural control. Evaluated models included pre-specified parameterizations for clinical trial simulation, analogous mixed-effects regression models parameterized directly, and random forest ensemble models. Assessment used a meta-database of Alzheimer’s disease studies with validation in simulated synthetic cohorts. Results: All models observed increases in variance under imputation leading to increased prediction error. Bias decreased with imputation except under the pre-specified parameterization, which increased in the meta-database, but was attenuated under simulation. Known fitted subject effects gave the best prediction results. Conclusion: Subject-specific effects were found to have a profound impact on predicting ADAS-Cog. Reductions in bias suggest imputing random effects assists in calculating results on average, as when simulating clinical trials. However, reduction in error emphasizes population-level effects when attempting to predict outcomes for individuals. Forecasting future observations greatly benefits from using known subject-specific effects.

Publisher

IOS Press

Subject

Psychiatry and Mental health,Geriatrics and Gerontology,Clinical Psychology,General Medicine,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3