Analysis of the trade-offs between parametric and non-parametric classifiers for classification of faults in pneumatic actuator. Case: DAMADICS

Author:

Mahalingam Priyadarshini1,Kalpana D.1,Thyagarajan T.1

Affiliation:

1. Department of Instrumentation Engineering, Madras Institute of Technology Campus, Anna University, Chennai, Tamilnadu, India

Abstract

This paper disseminates an extra dimension of substantial analysis demonstrating the trade-offs between the performance of Parametric (P) and Non-Parametric (NP) classification algorithms when applied to classify faults occurring in pneumatic actuators. Owing to the criticality of the actuator failures, classifying faults accurately may lead to robust fault tolerant models. In most cases, when applying machine learning, the choice of existing classifier algorithms for an application is random. This work, addresses the issue and quantitatively supports the selection of appropriate algorithm for non-parametric datasets. For the case study, popular parametric classification algorithms namely: Naïve Bayes (NB), Logistic Regression (LR), Linear Discriminant Analysis (LDA), Perceptron (PER) and non-parametric algorithms namely: Multi-Layer Perceptron (MLP), k Nearest Neighbor (kNN), Support Vector Machine (SVM), Decision Tree (DT) and Random Forest (RF) are implemented over a non-parametric, imbalanced synthetic dataset of a benchmark actuator process. Upon using parametric classifiers, severe adultery in results is witnessed which misleads the interpretation towards the accuracy of the model. Experimentally, about 20% improvement in accuracy is obtained on using non-parametric classifiers over the parametric ones. The robustness of the models is evaluated by inducing label noise varying between 5% to 20%. Triptych analysis is applied to discuss the interpretability of each machine learning model. The trade-offs in choice and performance of algorithms and the evaluating metrics for each estimator are analyzed both quantitatively and qualitatively. For a more cogent reasoning through validation, the results obtained for the synthetic dataset are compared against the industrial dataset of the pneumatic actuator of the sugar refinery, Development and Application of Methods for Actuator Diagnosis in Industrial Control Systems (DAMADICS). The efficiency of non-parametric classifiers for the pneumatic actuator dataset is well proved.

Publisher

IOS Press

Subject

Artificial Intelligence,General Engineering,Statistics and Probability

Reference32 articles.

1. Fault diagnosis system based on fuzzy logic: Application to a valve actuator benchmark;Escobet;Journal of Intelligent & Fuzzy Systems,2011

2. Linear discriminant analysis: A detailed tutorial;Tharwat;AI Communications,2017

3. Mining data with random forests: A survey and results of new tests;Verikas;Pattern Recognition,2011

4. Kadra A. , Lindauer M. , Hutter F. and Grabocka J. , Regularization is all you need: Simple neural nets can excel on tabular data. arXiv preprint arXiv:9, (2021).

5. Classification in the presence of label noise: a survey;Frénay;IEEE Transactions on Neural Networks and Learning Systems,2013

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3