An efficient approach for data-imbalanced hate speech detection in Arabic social media

Author:

Mohamed Mohamed S.1,Elzayady Hossam1,Badran Khaled M.1,Salama Gouda I.1

Affiliation:

1. Department of Computer Engineering and Artificial Intelligence, Military Technical College, Egypt

Abstract

The use of hateful language in public debates and forums is becoming more common. However, this might result in antagonism and conflicts among individuals, which is undesirable in an online environment. Countries, businesses, and educational institutions are exerting their greatest efforts to develop effective solutions to manage this issue. In addition, recognizing such content is difficult, particularly in Arabic, due to a variety of challenges and constraints. Long-tailed data distribution is often one of the most significant issues in actual Arabic hate speech datasets. Pre-trained models, such as bidirectional encoder representations from transformers (BERT) and generative pre-trained transformers (GPT), have become more popular in numerous natural language processing (NLP) applications in recent years. We conduct extensive experiments to address data imbalance issues by utilizing oversampling methods and a focal loss function in addition to traditional loss functions. Quasi-recurrent neural networks (QRNN) are employed to fine-tune the cutting-edge transformer-based models, MARBERTv2, MARBERTv1, and ARBERT. In this context, we suggest a new approach using ensemble learning that incorporates best-performing models for both original and oversampled datasets. Experiments proved that our proposed approach achieves superior performance compared to the most advanced methods described in the literature.

Publisher

IOS Press

Subject

Artificial Intelligence,General Engineering,Statistics and Probability

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3