A multi-scale residual encoding network for concrete crack segmentation

Author:

Liu Die12,Xu MengDie1,Li ZhiTing2,He Yingying1,Zheng Long2,Xue Pengpeng3,Wu Xiaodong2

Affiliation:

1. Chongqing College of Humanities, Science & Technology, Chongqing, China

2. School of Civil Engineering, Chongqing Jiaotong University, Chongqing, China

3. Chengdu College of Arts and Sciences, Chengdu, China

Abstract

Concrete surface crack detection plays a crucial role in ensuring concrete safety. However, manual crack detection is time-consuming, necessitating the development of an automatic method to streamline the process. Nonetheless, detecting concrete cracks automatically remains challenging due to the heterogeneous strength of cracks and the complex background. To address this issue, we propose a multi-scale residual encoding network for concrete crack segmentation. This network leverages the U-NET basic network structure to merge feature maps from different levels into low-level features, thus enhancing the utilization of predicted feature maps. The primary contribution of this research is the enhancement of the U-NET coding network through the incorporation of a residual structure. This modification improves the coding network’s ability to extract features related to small cracks. Furthermore, an attention mechanism is utilized within the network to enhance the perceptual field information of the crack feature map. The integration of this mechanism enhances the accuracy of crack detection across various scales. Furthermore, we introduce a specially designed loss function tailored to crack datasets to tackle the problem of imbalanced positive and negative samples in concrete crack images caused by data imbalance. This loss function helps improve the prediction accuracy of crack pixels. To demonstrate the superiority and universality of our proposed method, we conducted a comparative evaluation against state-of-the-art edge detection and semantic segmentation methods using a standardized evaluation approach. Experimental results on the SDNET2018 dataset demonstrate the effectiveness of our method, achieving mIOU, F1-score, Precision, and Recall scores of 0.862, 0.941, 0.945, and 0.9394, respectively.

Publisher

IOS Press

Subject

Artificial Intelligence,General Engineering,Statistics and Probability

Reference21 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3