Affiliation:
1. Department of Business Administration, Liaoning Technical University, Huludao, China
Abstract
With the rapid development of big data and continuous optimization of online shopping platforms, personalized recommendation has become a standard feature of recommendation methods. In order to effectively provide personalized recommendations to customers, improve recommendation accuracy, and customer satisfaction, it is necessary to consider customers’ preferences for multiple product attributes when making product recommendations. However, existing recommendation methods require precise calculation of product attribute weights, which is computationally expensive, complex, and often results in unstable weight values. This paper proposes a multi-attribute recommendation method based on consumer decision preference information that overcomes the need for weights and reflects personalized customer preferences. Based on the acquisition of customer product attribute preference sequences, a partial order relation for recommended products is constructed using partial order set theory. Finally, the recommended products are determined through the partial order Hasse diagram, where the top layer elements of the Hasse diagram represent the recommended product set. This method addresses challenges that traditional content-based recommendations cannot overcome. The experiment in this paper uses a dataset of 30,000 records from Beeradvocate beer reviews. The experimental results show that, compared to traditional multi-attribute recommendation methods, this method only requires decision-maker preference information to complete product recommendations, requiring less information and having lower computational costs, resulting in more robust results.