Incremental association rules update algorithm based on the sort compression matrix

Author:

Zhang Qian1,Wang Jianguo1

Affiliation:

1. School of Computer Science and Engineering, Xi’an Technology University, Xi’an, China

Abstract

Association rule algorithm has always been a research hotspot in the field of data mining, in the context of today’s big data era, in order to efficiently obtain association rules and effectively update them, based on the original fast update pruning (FUP) algorithm, an association rule incremental update algorithm (FBSCM) based on sorting compression matrix is proposed to solve the shortcomings of frequent scanning of transaction datasets. Firstly, The algorithm maps the transaction dataset as a Boolean matrix, and changes the storage mode of the matrix(that is, adding two columns and a row vector); Secondly, the matrix is compressed many times during the generation of frequent k-itemset; After that, the items in the matrix are sorted incrementally according to the support degree of the itemset; Finally, the original string comparison operation is replaced by the vector product of each column of the matrix. Experimental results and analysis show that the FBSCM algorithm has higher temporal performance than the traditional FUP algorithm in different incremental dataset sizes, different minimum support thresholds and different feature datasets, especially when the incremental transaction volume is large or the minimum support degree is small.

Publisher

IOS Press

Subject

Artificial Intelligence,General Engineering,Statistics and Probability

Reference16 articles.

1. Usman M. and Usman M. , Multi-Level Mining and Visualization of Informative Association Rules [J], Information Science & Engineering 32(4) (2016).

2. Applications of data mining and machine learning framework in aquaculture and fisheries: A review [J];Gladju;Smart Agricultural Technology,2022

3. Principal association mining: an efficient classification approach [J];Chen;Knowledge-Based Systems,2014

4. Dependable large scale behavioral patterns mining from sensor data using Hadoop platform [J];Rashid;Information Sciences,2017

5. Risk prediction and early warning for air traffic controllers’ unsafe acts using association rule mining and random forest [J];Xu;Safety Science,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3