Spatial-temporal load forecasting of electric vehicle charging stations based on graph neural network

Author:

Zhang Yanyu12,Liu Chunyang12,Rao Xinpeng12,Zhang Xibeng12,Zhou Yi12

Affiliation:

1. School of Artificial Intelligence, Henan University, Zhengzhou, China

2. International Joint Research Laboratory for Cooperative Vehicular Networks of Henan, Zhengzhou, China

Abstract

Accurate forecasting of the load of electric vehicle (EV) charging stations is critical for EV users to choose the optimal charging stations and ensure the safe and efficient operation of the power grid. The charging load of different charging stations in the same area is interrelated. However, forecasting the charging load of individual charging station using traditional time series methods is insufficient. To fully consider the spatial-temporal correlation between charging stations, this paper proposes a new charging load forecasting framework based on the Adaptive Spatial-temporal Graph Neural Network with Transformer (ASTNet-T). First, an adaptive graph is constructed based on the spatial relationship and historical information between charging stations, and the local spatial-temporal dependencies hidden therein are captured by the spatio-temporal convolutional network. Then, a Transformer network is introduced to capture the global spatial-temporal dependencies of charging loads and predict the future multilevel charging loads of charging stations. Finally, extensive experiments are conducted on two real-world charging load datasets. The effectiveness and robustness of the proposed algorithm are verified by experiments. In the Dundee City dataset, the MAE, MAPE, and RMSE values of the proposed model are improved by approximately 71%, 90%, and 67%, respectively, compared to the suboptimal baseline model, demonstrating that the proposed algorithm significantly improves the accuracy of load forecasting.

Publisher

IOS Press

Subject

Artificial Intelligence,General Engineering,Statistics and Probability

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3