Application of an improved VGG and RPN network in precision parts recognition

Author:

Li Dongjie12,Wang Mingrui12,Zhang Yu12,Zhai Changhe12

Affiliation:

1. Key Laboratory of Advanced Manufacturing and Intelligent Technology Ministry of Education, Harbin University of Science and Technology, Harbin, Heilongjiang, China

2. Heilongjiang Key Laboratory of Complex Intelligent System and Integration, Harbin University of Science and Technology, Harbin, Heilongjiang, China

Abstract

Although various automatic or semi-automatic recognition algorithms have been proposed for tiny part recognition, most of them are limited to expert knowledge base-based target recognition techniques, which have high false detection rates, low recognition accuracy and low efficiency, which largely limit the quality as well as efficiency of tiny part assembly. Therefore, this paper proposes a precision part image preprocessing method based on histogram equalization algorithm and an improved convolutional neural network (i.e. Region Proposal Network(RPN), Visual Geometry Group(VGG)) model for precision recognition of tiny parts. Firstly, the image is restricted to adaptive histogram equalization for the problem of poor contrast between part features and the image background. Second, a custom central loss function is added to the recommended frame extraction RPN network to reduce problems such as excessive intra-class spacing during classification. Finally, the local response normalization function is added after the nonlinear activation function and pooling layer in the VGG network, and the original activation function is replaced by the Relu function to overcome the problems such as high nonlinearity and serious overfitting of the original model. Experiments show that the improved VGG model achieves 95.8% accuracy in precision part recognition and has a faster recognition speed than most existing convolutional networks trained on the same test set.

Publisher

IOS Press

Subject

Artificial Intelligence,General Engineering,Statistics and Probability

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3