Movie recommendation system using taymon optimized deep learning network

Author:

Aramuthakannan S.1,Ramya Devi M.2,Lokesh S.3,Kumar R.4

Affiliation:

1. Department of Mathematics, PSG Institue of Technology and Applied Research, Coimbatore, Tamil Nadu, India

2. Computer Science and Engineering, Hindusthan College of Engineering and Technology, Coimbatore, Tamil Nadu, India

3. Department of Computer Science and Engineering, PSG Institue of Technology and Applied Research, Coimbatore, Tamil Nadu, India

4. Department of Computer Science and Engineering, Sri Ramakrishna Institue of Technology, Coiimbatore, India

Abstract

The increased usage of the internet and social networks generates a large volume of information. Exploring through the large collection is time-consuming and hard to find the required one, so there is a serious need for a recommendation system. Based on this context several movie recommendation (MR) systems have been recently established. In addition, they have poor data analytics capability and cannot handle changing user preferences. As a result, there are many movies listed on the recommendation page, which provides for a poor user experience is the major issue. Therefore, in this work, a novel Taymon Optimized Deep Learning network (TODL net) for recommending top best movies based on their past choices, behaviour and movie contents. The deep neural network is a combination of Dilated CNN with Bi-directional LSTM. The DiCNN-BiLSTM model eliminates the functionality pooling operations and uses a dilated convolution layer to address the issue of information loss. The DiCNN is employed to learn the movie contents by mining user behavioral pattern attributes. The BiLSTM is applied to recommend the best movies on basis of the extracted features of the movie rating sequences of users in other social mediums. Moreover, for providing better results the DiCNN-BiLSTM is optimized with Taymon optimization algorithm to recommend best movies for the users. The proposed TODL net obtains the overall accuracy of 97.24% for best movies recommendation by using TMDB and MovieLens datasets.

Publisher

IOS Press

Subject

Artificial Intelligence,General Engineering,Statistics and Probability

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3