Early Diagnosing and Transformation Prediction of Alzheimer’s Disease Using Multi-Scaled Self-Attention Network on Structural MRI Images with Occlusion Sensitivity Analysis

Author:

Fan Xinxin12,Li Haining3,Liu Lin2,Zhang Kai1,Zhang Zhewei1,Chen Yi1,Wang Zhen4,He Xiaoli5,Xu Jinping1,Hu Qingmao1,

Affiliation:

1. Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China

2. University of Chinese Academy of Sciences, Beijing, China

3. Department of Neurology, General Hospital of Ningxia Medical University, Yinchuan, China

4. Zhuhai Institute of Advanced Technology, Zhuhai, China

5. Department of Psychology, Ningxia University, Yinchuan, China

Abstract

Background: Structural magnetic resonance imaging (sMRI) is vital for early Alzheimer’s disease (AD) diagnosis, though confirming specific biomarkers remains challenging. Our proposed Multi-Scale Self-Attention Network (MUSAN) enhances classification of cognitively normal (CN) and AD individuals, distinguishing stable (sMCI) from progressive mild cognitive impairment (pMCI). Objective: This study leverages AD structural atrophy properties to achieve precise AD classification, combining different scales of brain region features. The ultimate goal is an interpretable algorithm for this method. Methods: The MUSAN takes whole-brain sMRI as input, enabling automatic extraction of brain region features and modeling of correlations between different scales of brain regions, and achieves personalized disease interpretation of brain regions. Furthermore, we also employed an occlusion sensitivity algorithm to localize and visualize brain regions sensitive to disease. Results: Our method is applied to ADNI-1, ADNI-2, and ADNI-3, and achieves high performance on the classification of CN from AD with accuracy (0.93), specificity (0.82), sensitivity (0.96), and area under curve (AUC) (0.95), as well as notable performance on the distinguish of sMCI from pMCI with accuracy (0.85), specificity (0.84), sensitivity (0.74), and AUC (0.86). Our sensitivity masking algorithm identified key regions in distinguishing CN from AD: hippocampus, amygdala, and vermis. Moreover, cingulum, pallidum, and inferior frontal gyrus are crucial for sMCI and pMCI discrimination. These discoveries align with existing literature, confirming the dependability of our model in AD research. Conclusion: Our method provides an effective AD diagnostic and conversion prediction method. The occlusion sensitivity algorithm enhances deep learning interpretability, bolstering AD research reliability.

Publisher

IOS Press

Subject

Psychiatry and Mental health,Geriatrics and Gerontology,Clinical Psychology,General Medicine,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3