Semiparametric transformation model:A hierarchical Bayesian approach

Author:

Achcar Jorge Alberto,Barili Emerson,Martinez Edson Zangiacomi

Abstract

The use of semiparametric or transformation models has been considered by many authors in the analysis of lifetime data in the presence of censoring and covariates as an alternative and generalization of the usual proportional hazards, the proportional odds models, and the accelerated failure time models, extensively used in lifetime data analysis. The inferences for the proportional hazards model introduced by Cox (1972) are usually obtained by maximum likelihood estimation methods assuming the partial likelihood function introduced by Cox (Cox, 1975). In this study, we consider a hierarchical Bayesian analysis of the proportional hazards model assuming the complete likelihood function obtained from a transformation model considering the unknown hazard function as a latent unknown variable under a Bayesian approach. Some applications with real time medical data illustrate the proposed methodology.

Publisher

IOS Press

Subject

Applied Mathematics,Modeling and Simulation,Statistics and Probability

Reference41 articles.

1. Analysis of survival data by the proportional odds model;Bennett;Statistics in Medicine,1983

2. Bayes and empirical Bayes methods for data analysis;Carlin;Chapman & Hall/CRC,2010

3. Approximating the baseline hazard function by Taylor series for interval-censored time-to-event data;Chen;Journal of Biopharmaceutical Statistics,2013

4. Semiparametric analysis of transformation models with censored data;Chen;Biometrika,2002

5. Checking semiparametric transformation models with censored data;Chen;Biostatistics,2012

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3