The exponential power-G family of distributions: Properties, simulations, regression modeling and applications

Author:

Ferreira Alexsandro Arruda,Cordeiro Gauss Moutinho

Abstract

The new exponential power-G is introduced following Alzaatreh et al. (2013). Some of its main statistical properties are provided in terms of the exponentiated-G properties. Maximum likelihood estimation and simulations are addressed using the log-logistic for the baseline distribution. The log-exponential power log-logistic regression model is constructed and applied to censored data. The utility of the new models is proved by means of two real data sets.

Publisher

IOS Press

Subject

Applied Mathematics,Modeling and Simulation,Statistics and Probability

Reference9 articles.

1. A new modified Kies family: Properties, estimation under complete and type-II censored samples, and engineering applications;Al-Babtain;Mathematics,2020

2. Generalized beta-generated distributions;Alexander;Computational Statistics & Data Analysis,2012

3. Alizadeh, M., Emadi, M., Doostparast, M., Cordeiro, G. M., Ortega, E. M. M., & Pescim, R. R. (2015). A new family of distributions: the kumaraswamy odd log-logistic, properties and applications. Hacettepe Journal of Mathematics and Statistics, 44, 1491-1512. Alzaatreh et al., 2013 Alzaatreh, A., Lee, C., & Famoye, F. (2013). A new method for generating families of continuous distributions. METRON, 71, 63-79. Baharith and Alamoudi, 2021 Baharith, L. A., & Alamoudi, H. H. (2021). The Exponentiated Fréchet Generator of Distributions with Applications. Symmetry, 13, 572. Bourguignon et al., 2014 Bourguignon, M., Silva, R., & Cordeiro, G. M. (2014). The Weibull-G Family of Probability Distributions. Journal of Data Science, 12, 53-68. Campos et al., 2005 Campos, D. P., Ribeiro, S. R., Grinsztejn, B., Veloso, V. G., Valente, J. G., Bastos, F. I., Morgado, M. G., & Gadelha, A. J. (2005). Survival of AIDS patients using two case definitions, Rio de Janeiro, Brazil, 1986-2003. Aids, 19, S22-S26. Castellares and Lemonte, 2015 Castellares, F., & Lemonte, A. J. (2015). A new generalized Weibull distribution generated by gamma random variables. Journal of the Egyptian Mathematical Society, 23, 382-390. Chipepa et al., 2019 Chipepa, F., Oluyede, B. O., & Makubate, B. (2019). A new generalized family of odd Lindley-G distributions with application. International Journal of Statistics and Probability, 8, 1-22. Cordeiro et al., 2016 Cordeiro, G. M., Alizadeh, M., & Marinho, P. R. D. (2016). The type I half-logistic family of distributions. Journal of Statistical Computation and Simulation, 86, 707-728. Cordeiro et al., 2017 Cordeiro, G. M., Alizadeh, M., Ozel, G., Hosseini, B., Ortega, E. M. M., & Altun, E. (2017). The generalized odd log-logistic family of distributions: properties, regression models and applications. Journal of Statistical Computation and Simulation, 87, 908-932. Cordeiro and de Castro, 2011 Cordeiro, G. M., & de Castro, M. (2011). A new family of generalized distributions. Journal of Statistical Computation and Simulation, 81, 883-898. Cordeiro et al., 2013 Cordeiro, G. M., Ortega, E. M. M., & Cunha, D. C. C. (2013). The exponentiated generalized class of distributions. Journal of Data Science, 11, 1-27. Cordeiro et al., 2010 Cordeiro, G. M., Ortega, E. M. M., & Nadarajah, S. (2010). The Kumaraswamy Weibull distribution with application to failure data. Journal of the Franklin Institute, 347, 1399-1429. Cordeiro et al., 2014 Cordeiro, G. M., Ortega, E. M. M., Popović, B. V., & Pescim, R. R. (2014). The Lomax generator of distributions: Properties, minification process and regression model. Applied Mathematics and Computation, 247, 465-486. De Santana et al., 2012 De Santana, T. V. F., Ortega, E. M. M., Cordeiro, G. M., & Silva, G. O. (2012). The Kumaraswamy-log-logistic distribution. Journal of Statistical Theory and Applications, 11, 265-291. Dunn and Smyth, 1996 Dunn, P. K., & Smyth, G. K. (1996). Randomized quantile residuals. Journal of Computational and Graphical Statistics, 5, 236-244. Eugene et al., 2002 Eugene, N., Lee, C., & Famoye, F. (2002). Beta-normal distribution and its applications. Communications in Statistics – Theory and Methods, 31, 497-512. Guerra et al., 2017 Guerra, R. R., Peña-Ramírez, F. A., & Cordeiro, G. M. (2017). The gamma Burr XII Distributions: Theory and Applications. Journal of Data Science, 15, 467-494. Gupta et al., 1998 Gupta, R. C., Gupta, P. L., & Gupta, R. D. (1998). Modeling failure time data by lehman alternatives. Communications in Statistics – Theory and Methods, 27, 887-904. Hashimoto et al., 2017 Hashimoto, E. M., Ortega, E. M. M., Cordeiro, G. M., & Hamedani, G. (2017). The log-gamma-logistic regression model: Estimation, sensibility and residual analysis. Journal of Statistical Theory and Applications, 16, 547-564. Kenney and Keeping, 1962 Kenney, J., & Keeping, E. (1962). Moving averages. 3 edn. NJ: Van Nostrand. Lee et al., 2007 Lee, C., Famoye, F., & Olumolade, O. (2007). Beta-Weibull distribution: some properties and applications to censored data. Journal of Modern Applied Statistical Methods, 6, 17. Lemonte, 2014 Lemonte, A. J. (2014). The beta log-logistic distribution. Brazilian Journal of Probability and Statistics, 28, 313-332. Marinho et al., 2019 Marinho, P. R. D., Silva, R. B., Bourguignon, M., Cordeiro, G. M., & Nadarajah, S. (2019). AdequacyModel: An R package for probability distributions and general purpose optimization. PLOS ONE, 14, 1-30. Marshall and Olkin, 1997 Marshall, A. W., & Olkin, I. (1997). A new method for adding a parameter to a family of distributions with application to the exponential and Weibull families. Biometrika, 84, 641-652. Moors, 1988 Moors, J. J. A. (1988). A quantile alternative for kurtosis. Journal of the Royal Statistical Society. Series D (The Statistician), 37, 25-32. Mudholkar and Srivastava, 1993 Mudholkar, G. S., & Srivastava, D. K. (1993). Exponentiated Weibull family for analyzing bathtub failure-rate data. IEEE Transactions on Reliability, 42, 299-302. Nadarajah et al., 2015 Nadarajah, S., Cordeiro, G. M., & Ortega, E. M. M. (2015). The Zografos–Balakrishnan-G family of distributions: Mathematical properties and applications. Communications in Statistics – Theory and Methods, 44, 186-215. Nadarajah and Gupta, 2007 Nadarajah, S., & Gupta, A. K. (2007). The exponentiated gamma distribution with application to drought data. Calcutta Statistical Association Bulletin, 59, 29-54. Nadarajah and Kotz, 2003 Nadarajah, S., & Kotz, S. (2003). The exponentiated Fréchet distribution. Interstat Electronic Journal, 14, 1-7. R Core Team, 2020 R Core Team (2020). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria.

4. The Zografos-Balakrishnan Log-Logistic Distribution: Properties and Applications;Ramos;Journal of Statistical Theory and Applications,2013

5. The transmuted Gompertz-G family of distributions: properties and applications;Reyad;Tbilisi Mathematical Journal,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3