1. A new modified Kies family: Properties, estimation under complete and type-II censored samples, and engineering applications;Al-Babtain;Mathematics,2020
2. Generalized beta-generated distributions;Alexander;Computational Statistics & Data Analysis,2012
3. Alizadeh, M., Emadi, M., Doostparast, M., Cordeiro, G. M., Ortega, E. M. M., & Pescim, R. R. (2015). A new family of distributions: the kumaraswamy odd log-logistic, properties and applications. Hacettepe Journal of Mathematics and Statistics, 44, 1491-1512. Alzaatreh et al., 2013 Alzaatreh, A., Lee, C., & Famoye, F. (2013). A new method for generating families of continuous distributions. METRON, 71, 63-79. Baharith and Alamoudi, 2021 Baharith, L. A., & Alamoudi, H. H. (2021). The Exponentiated Fréchet Generator of Distributions with Applications. Symmetry, 13, 572. Bourguignon et al., 2014 Bourguignon, M., Silva, R., & Cordeiro, G. M. (2014). The Weibull-G Family of Probability Distributions. Journal of Data Science, 12, 53-68. Campos et al., 2005 Campos, D. P., Ribeiro, S. R., Grinsztejn, B., Veloso, V. G., Valente, J. G., Bastos, F. I., Morgado, M. G., & Gadelha, A. J. (2005). Survival of AIDS patients using two case definitions, Rio de Janeiro, Brazil, 1986-2003. Aids, 19, S22-S26. Castellares and Lemonte, 2015 Castellares, F., & Lemonte, A. J. (2015). A new generalized Weibull distribution generated by gamma random variables. Journal of the Egyptian Mathematical Society, 23, 382-390. Chipepa et al., 2019 Chipepa, F., Oluyede, B. O., & Makubate, B. (2019). A new generalized family of odd Lindley-G distributions with application. International Journal of Statistics and Probability, 8, 1-22. Cordeiro et al., 2016 Cordeiro, G. M., Alizadeh, M., & Marinho, P. R. D. (2016). The type I half-logistic family of distributions. Journal of Statistical Computation and Simulation, 86, 707-728. Cordeiro et al., 2017 Cordeiro, G. M., Alizadeh, M., Ozel, G., Hosseini, B., Ortega, E. M. M., & Altun, E. (2017). The generalized odd log-logistic family of distributions: properties, regression models and applications. Journal of Statistical Computation and Simulation, 87, 908-932. Cordeiro and de Castro, 2011 Cordeiro, G. M., & de Castro, M. (2011). A new family of generalized distributions. Journal of Statistical Computation and Simulation, 81, 883-898. Cordeiro et al., 2013 Cordeiro, G. M., Ortega, E. M. M., & Cunha, D. C. C. (2013). The exponentiated generalized class of distributions. Journal of Data Science, 11, 1-27. Cordeiro et al., 2010 Cordeiro, G. M., Ortega, E. M. M., & Nadarajah, S. (2010). The Kumaraswamy Weibull distribution with application to failure data. Journal of the Franklin Institute, 347, 1399-1429. Cordeiro et al., 2014 Cordeiro, G. M., Ortega, E. M. M., Popović, B. V., & Pescim, R. R. (2014). The Lomax generator of distributions: Properties, minification process and regression model. Applied Mathematics and Computation, 247, 465-486. De Santana et al., 2012 De Santana, T. V. F., Ortega, E. M. M., Cordeiro, G. M., & Silva, G. O. (2012). The Kumaraswamy-log-logistic distribution. Journal of Statistical Theory and Applications, 11, 265-291. Dunn and Smyth, 1996 Dunn, P. K., & Smyth, G. K. (1996). Randomized quantile residuals. Journal of Computational and Graphical Statistics, 5, 236-244. Eugene et al., 2002 Eugene, N., Lee, C., & Famoye, F. (2002). Beta-normal distribution and its applications. Communications in Statistics – Theory and Methods, 31, 497-512. Guerra et al., 2017 Guerra, R. R., Peña-Ramírez, F. A., & Cordeiro, G. M. (2017). The gamma Burr XII Distributions: Theory and Applications. Journal of Data Science, 15, 467-494. Gupta et al., 1998 Gupta, R. C., Gupta, P. L., & Gupta, R. D. (1998). Modeling failure time data by lehman alternatives. Communications in Statistics – Theory and Methods, 27, 887-904. Hashimoto et al., 2017 Hashimoto, E. M., Ortega, E. M. M., Cordeiro, G. M., & Hamedani, G. (2017). The log-gamma-logistic regression model: Estimation, sensibility and residual analysis. Journal of Statistical Theory and Applications, 16, 547-564. Kenney and Keeping, 1962 Kenney, J., & Keeping, E. (1962). Moving averages. 3 edn. NJ: Van Nostrand. Lee et al., 2007 Lee, C., Famoye, F., & Olumolade, O. (2007). Beta-Weibull distribution: some properties and applications to censored data. Journal of Modern Applied Statistical Methods, 6, 17. Lemonte, 2014 Lemonte, A. J. (2014). The beta log-logistic distribution. Brazilian Journal of Probability and Statistics, 28, 313-332. Marinho et al., 2019 Marinho, P. R. D., Silva, R. B., Bourguignon, M., Cordeiro, G. M., & Nadarajah, S. (2019). AdequacyModel: An R package for probability distributions and general purpose optimization. PLOS ONE, 14, 1-30. Marshall and Olkin, 1997 Marshall, A. W., & Olkin, I. (1997). A new method for adding a parameter to a family of distributions with application to the exponential and Weibull families. Biometrika, 84, 641-652. Moors, 1988 Moors, J. J. A. (1988). A quantile alternative for kurtosis. Journal of the Royal Statistical Society. Series D (The Statistician), 37, 25-32. Mudholkar and Srivastava, 1993 Mudholkar, G. S., & Srivastava, D. K. (1993). Exponentiated Weibull family for analyzing bathtub failure-rate data. IEEE Transactions on Reliability, 42, 299-302. Nadarajah et al., 2015 Nadarajah, S., Cordeiro, G. M., & Ortega, E. M. M. (2015). The ZografosâBalakrishnan-G family of distributions: Mathematical properties and applications. Communications in Statistics – Theory and Methods, 44, 186-215. Nadarajah and Gupta, 2007 Nadarajah, S., & Gupta, A. K. (2007). The exponentiated gamma distribution with application to drought data. Calcutta Statistical Association Bulletin, 59, 29-54. Nadarajah and Kotz, 2003 Nadarajah, S., & Kotz, S. (2003). The exponentiated Fréchet distribution. Interstat Electronic Journal, 14, 1-7. R Core Team, 2020 R Core Team (2020). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria.
4. The Zografos-Balakrishnan Log-Logistic Distribution: Properties and Applications;Ramos;Journal of Statistical Theory and Applications,2013
5. The transmuted Gompertz-G family of distributions: properties and applications;Reyad;Tbilisi Mathematical Journal,2018