Affiliation:
1. , Jiangsu University, , , China
Abstract
This paper focus on a state feedback controller (SFC)-based optimal control scheme for surface-mounted permanent-magnet synchronous motor (SPMSM) with auto-tuning of controller built on seeker optimization algorithm (SOA). First, based on the nonlinear state-space model of SPMSM, voltage feedforward compensation is used to design a linear SFC. Then in order to guarantee the steady performance in speed and current, integral models considering the errors of rotor speed and current response in d-axis are added in the state space model of SPMSM. Furthermore, by statically decoupling the load torque in the state equation, feedforward compensation is implemented on the load torque to improve the dynamic performance of the controller. The load torque is estimated by using disturbance observer with reasonable parameter selection. Then, with the consideration of the search capacity of seeker optimization algorithm (SOA), it is adopted to acquire matrix coefficient of the presented controller. Furthermore, in order to suppress the speed overshoot, a penalty term is introduced to the fitness index. The performance of the proposed method has been validated experimentally and compared with the conventional method under different conditions.
Subject
Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,Electronic, Optical and Magnetic Materials
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献