Truncated total variation in fractional B-spline wavelet transform for micro-CT image denoising

Author:

Ji Dongjiang1,Xue Xiying1,Xu Chunyu1

Affiliation:

1. School of Science, Tianjin University of Technology and Education, Tianjin, China

Abstract

BACKGROUND: In medical applications, computed tomography (CT) is widely used to evaluate various sample characteristics. However, image quality of CT reconstruction can be degraded due to artifacts. OBJECTIVE: To propose and test a truncated total variation (truncation TV) model to solve the problem of large penalties for the total variation (TV) model. METHODS: In this study, a truncated TV image denoising model in the fractional B-spline wavelet domain is developed to obtain the best solution. The method is validated by the analysis of CT reconstructed images of actual biological Pigeons samples. For this purpose, several indices including the peak signal-to-noise ratio (PSNR), structural similarity index (SSIM) and mean square error (MSE) are used to evaluate the quality of images. RESULTS: Comparing to the conventional truncated TV model that yields 22.55, 0.688 and 361.17 in PSNR, SSIM and MSE, respectively, using the proposed fractional B-spline-truncated TV model, the computed values of these evaluation indices change to 24.24, 0.898 and 244.98, respectively, indicating substantial reduction of image noise with higher PSNR and SSIM, and lower MSE. CONCLUSIONS: Study results demonstrate that compared with many classic image denoising methods, the new denoising algorithm proposed in this study can more effectively suppresses the reconstructed CT image artifacts while maintaining the detailed image structure.

Publisher

IOS Press

Subject

Electrical and Electronic Engineering,Condensed Matter Physics,Radiology, Nuclear Medicine and imaging,Instrumentation,Radiation

Reference26 articles.

1. Algorithm-enabled low-dose micro-CT imaging;Han;IEEE Transactions on Medical Imaging,2011

2. A review on CT image noise and its denoising;Diwakar;Biomedical Signal Processing and Control,2018

3. CT image denoising using NLM and its method noise thresholding;Diwakar;Multimedia Tools and Applications,2020

4. Total variation combining nonlocal means filtration for image reconstruction in X-ray computed tomography;Cai;Journal of X-Ray Science and Technology,2022

5. Image smoothing via truncated total variation;Dou;IEEE Access,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3