Genome-Wide Association Study of Brain Alzheimer’s Disease-Related Metabolic Decline as Measured by [18F] FDG-PET Imaging

Author:

Wang Rong-Ze1,Yang Yu-Xiang1,Li Hong-Qi1,Shen Xue-Ning1,Chen Shi-Dong1,Dong Qiang1,Wang Yi1,Yu Jin-Tai1,

Affiliation:

1. Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China

Abstract

Background: Hypometabolism detected by fluorodeoxyglucose F18 positron emission tomography ([18F] FDG PET) is an early neuropathologic changes in Alzheimer’s disease (AD) and provides important pathologic staging information. Objective: This study aimed to discover genetic interactions that regulate longitudinal glucose metabolic decline in AD-related brain regions. Methods: A total of 586 non-Hispanic white individuals from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) 1/GO/2 cohorts that met all quality control criteria were included in this study. Genome-wide association study of glucose metabolic decline in regions of interest (ROIs) was performed with linear regression under the additive genetic model. Results: We identified two novel variants that had a strong association with longitudinal metabolic decline in different ROI. Rs4819351-A in gene 1-acylglycerol-3-phosphate O-acyltransferase 3 (AGPAT3) demonstrated reduced metabolic decline in right temporal gyrus (p = 3.97×10–8, β= –0.016), while rs13387360-T in gene LOC101928196 demonstrated reduced metabolic decline in left angular gyrus (p = 1.69×10–8, β= –0.027). Conclusion: Our results suggest two genome-wide significant SNPs (rs4819351, rs13387360) in AGPAT3 and LOC101928196 as protective loci that modulate glucose metabolic decline. These two genes should be further investigated as potential therapeutic target for neurodegeneration diseases.

Publisher

IOS Press

Subject

Psychiatry and Mental health,Geriatrics and Gerontology,Clinical Psychology,General Medicine,General Neuroscience

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3