Detection and classification of rainfall in South America using satellite images and machine learning techniques

Author:

Andelsman Federico,Masuelli Sergio,Tamarit Francisco

Abstract

The study of precipitation is one of the most intriguing areas in atmospheric sciences, with significant implications for our daily lives and climate change projections. This paper explores the estimation of rainfall trends in South American regions using convolutional neural networks (CNNs). The study focuses on the application of Cloud-Net, a CNN-based model with a format similar to an autoencoder, to obtain qualitative estimates of precipitation patterns. The employed loss functions, Categorical Cross Entropy and Categorical Focal Loss, address the challenges of classifying minority categories in unbalanced data. Regional analysis was conducted, identifying days with high rainfall intensity and the predominant intensities in 25 regions. The CNN model’s performance was compared with the XGBoost algorithm, showing excellent results for extreme rainfall categories and challenging intermediate categories. Furthermore, a comparison was made with Quantitative Precipitation Estimation (QPE) data and ground measurements from rain gauges. While the CNN model provided a valuable qualitative estimate of precipitation trends, achieving precise quantitative estimation would require an extensive data set of in-situ measurements. Overall, this research demonstrates the potential of CNNs for estimating rainfall trends and understanding precipitation patterns in South American regions. The findings offer valuable insights for further applications in meteorology and environmental studies.

Publisher

Papers in Physics

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy,Materials Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3