Mechanisms of human neutrophil elastase-catalysed inactivation of factor VIII(a)

Author:

Ogiwara Kenichi,Matsumoto Tomoko,Nishiya Katsumi,Takeyama Masahiro,Shima Midori,Nogami Keiji

Abstract

SummaryMechanisms of inflammation and coagulation are linked through various pathways. Human neutrophil elastase (HNE), can bind to activated platelets, might be localised on platelet membranes that provide negatively-charged phospholipid essential for the optimum function of tenase complex. In this study, we examined the effect of HNE on factor (F)VIII. FVIII activity was rapidly diminished in the presence of HNE and was undetectable within 10 minutes. The inactivation rate waŝ8-fold greater than that of activated protein C (APC). This time-dependent inactivation was moderately affected by von Willebrand factor. HNE proteolysed the heavy chain (HCh) of FVIII into two terminal products, A11–358 and A2375–708, by limited proteolysis at Val358, Val374, and Val708. Cleavage at Val708 was much slower than that at Val358 in the >90-kDa A1-A2-B compared to the 90-kDa A1-A2. The 80-kDa light chain (LCh) was proteolysed to 75-kDa product by cleavage at Val1670. HNE-cata- lysed FVIIIa inactivation was markedly slower than that of native FVIII (by ~25-fold), due to delayed cleavage at Val708 in FVIIIa. The inactivation rate mediated by HNE was ~8-fold lower than that by APC. Cleavages at Val358 and Val708 were regulated by the presence of LCh and HCh, respectively. In conclusion, HNE-catalysed FVIII inactivation was associated with the limited-proteolysis that led to A11–358, A2375–708, and A3-C1-C21671–2332, and subsequently to critical cleavage at Val708. HNE-related FVIII(a) reaction might play a role in inactivation of HNE-induced coagulation process, and appeared to depend on the amounts of inactivated FVIII and active FVIIIa which is predominantly resistant to HNE inactivation.Note: An account of this work was presented at the 51st annual meeting of the American Society of Hematology, December 10, 2009, New Orleans, LA, USA.

Funder

MEXT KAKENHI

Publisher

Georg Thieme Verlag KG

Subject

Hematology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3