C2362F mutation gives rise to an ADAMTS13-resistant von Willebrand factor

Author:

Pontara Elena,Battiston Monica,Morpurgo Margherita,Cattini Maria,Casarin Elisabetta,Saga Giorgia,Daidone Viviana,De Marco Luigi,Casonato Alessandra

Abstract

Summaryvon Willebrand factor (VWF) multimers result from proteolysis by the metalloprotease ADAMTS13. Since C2362F-VWF features abnormally large multimers with their triplet oligomer structure replaced by a diffuse smear, we explored the susceptibility of C2362F-VWF to ADAMTS13. VWF-enriched blood samples, obtained by cryoethanol precipitation of plasma from a patient with von Willebrand disease (VWD) homozygous for the C2362F mutation and a normal subject, were submitted to cleavage by recombinant ADAMTS13 under static conditions in the presence of urea. C2362F-VWF proved completely ADAMTS13-resistant in vitro. At any concentration of recombinant ADAMTS13 (from 0.1 μM to 1 μM), there was no evidence of the abnormally large VWF multimers of C2362F-VWF disappearing, nor any increased representation of triplet multimer bands, unlike the situation seen in normal VWF. This is due partly to a defective ADAMTS13 binding to C2362F-VWF under static conditions, as seen in both the patient’s and recombinant mutated VWF proteins. These findings were associated with a significantly shorter than normal survival of C2362F-VWF after DDAVP, demonstrating that proteolysis and VWF survival may be independent phenomena. Our findings clearly demonstrate that the loss of cysteine 2362 makes VWF resistant to proteolysis by ADAMTS13, at least partly due to an impaired ADAMTS13 binding to VWF. This suggests that the B2 domain of VWF is involved in modulating ADAMTS13 binding to VWF and the consequent proteolytic process. The C2362F-VWF mutation also enables a new abnormality to be identified in the VWF-ADAMTS13 relationship, i.e. an ADAMTS13-resistant VWF.

Publisher

Georg Thieme Verlag KG

Subject

Hematology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3