Author:
Wangler M.,Wolkewitz M.,Beyersmann J.,Schumacher M.
Abstract
Summary
Objectives:
Nosocomial infections constitute a major medical problem leading to increased morbidity and mortality of patients. Besides prolongation of length of hospital stay, hospital mortality attributable to those infections is often the quantity of interest when describing their impact and consequences. Since occurrence of nosocomial infections is a time-dynamic process, estimation of this quantity might be hampered by that fact. A general frameworkshall be developed for defining and estimating attributable mortality that in addition is taking discharge of patients as competing risk and potential censoring of observation time into account.
Methods:
Since the term “attributable mortality” is used in a variety of meanings we first review basic definitions; the quantities of interest are then derived in terms of transition probabilities arising in a suitably defined multistate model that allows straightforward estimation and interpretation. Bootstrap resampling is used to calculate corresponding standard errors and confidence intervals.
Results:
The methodology is applied to the data of the SIR-3 study, a prospective cohort study on the incidence of nosocomial infections in intensive care unit patients. Occurrence of nosocomial pneumonia is shown to be associated with increased mortality; the population-attributable fraction is estimated as 7.7% (95% confidence interval: 2.6-12.8%) for an observation period of 120 days.
Conclusion:
Attributable mortality is an important risk measure in epidemiology. If risk exposure is time-dependent, multistate models provide an easily understandable framework to define and estimate attributable mortality. The approach is capable of handling competing events, which are omnipresent in clinical research and censoring.
Subject
Health Information Management,Advanced and Specialised Nursing,Health Informatics
Cited by
57 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献