Compartment- and cell-specific expression of coagulation and fibrinolysis factors in the murine lung undergoing inhalational versus intravenous endotoxin application

Author:

Wygrecka Malgorzata,Markart Philipp,Ruppert Clemens,Kuchenbuch Tim,Fink Ludger,Bohle Rainer,Grimminger Friedrich,Seeger Werner,Günther Andreas

Abstract

SummaryIntraalveolar and intravascular fibrin formation are typical hallmarks of acute inflammatory lung diseases, and may foster subsequent fibroproliferative events.We investigated the regulation and cellular sources of key coagulation and fibrinolysis factors in lungs undergoing compartmentalized challenge with endotoxin (LPS). BALB/c mice received 15ng LPS either by intravenous injection or by inhalation. Quantitative gene expression analysis (real-time RT-PCR) was performed for tissue factor (TF),TF pathway inhibitor (TFPI), tissue-type plasminogen activator (t-PA), urokinase-type-PA (u-PA), PA inhibitor-1 (PAI-1), and PAI-2 in peripheral white blood cells (PBC) as well as in alveolar macrophages (AM), type-II pneumocytes (ATII), endothelial cells (EC) and smooth muscle cells (SMC), all obtained by laser microdissection. Neither route of LPS administration caused substantial protein leakage or leukocyte recruitment into the alveolar space. Compartmentalized upregulation of procoagulant and downregulation of fibrinolytic activities was, however, observed in response to both modes of LPS challenge. Intraalveolar endotoxin, in particular, caused strong upregulation of TF (∼ 20-fold increase in gene expression) and PAI-2 (225-fold increase) in microdissected AM, upregulation of PAI-1 in microdissected ATII (300-fold increase) and EC (180-fold increase), upregulation of t-PA in EC (40-fold), and downregulation of u-PA in vascular smooth muscle cells. TFPI was largely unchanged in all cell types, and PBC showed no major gene regulatory response to inhaled endotoxin. We conclude that the lung possesses a cell-specific alveolar coagulation and fibrinolysis system, being independent of the vascular coagulation cascade and responding readily with enhanced procoagulant and anti-fibrinolytic activities to LPS challenge.

Funder

Deutsche Forschungsgemeinschaft (DFG)

Publisher

Georg Thieme Verlag KG

Subject

Hematology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3