Human recombinant alkaline phosphatase inhibits ex vivo platelet activation in humans

Author:

Tunjungputri Rahajeng N.,Peters Esther,van der Ven Andre,de Groot Philip G.,de Mast Quirijn,Pickkers Peter

Abstract

SummarySepsis-associated acute kidney injury (AKI) is associated with high morbidity and mortality. Excessive platelet activation contributes to AKI through the formation of microthrombi and amplification of systemic inflammation. Two phase II trials demonstrated that bovine-intestinal alkaline phosphatase (AP) improved renal function in critically ill patients with sepsis-associated AKI. In this study, we characterised the platelet-inhibiting effects of a human recombinant AP. Whole blood and platelet-rich plasma (PRP) of healthy volunteers (n=6) was pre-treated ex vivo with recAP, whereafter platelet reactivity to ADP, collagen-related peptide (CRP-XL) and Pam3CSK4 was determined by flow cytometry. RecAP (40 U/ml) reduced the platelet reactivity to ADP (inhibition with a median of 47%, interquartile range 43–49%; p<0.001) and tended to reduce platelet reactivity to CRP-XL (9%, 2–25%; p=0.08) in whole blood. The platelet-inhibiting effects of recAP were more pronounced in PRP both for ADP- (64%, 54–68%; p=0.002) and CRP-XL-stimulated samples (60%, 46–71%; p=0.002). RecAP rapidly converted ADP into adenosine, whereas antagonism of the A2A adenosine receptor partially reversed the platelet inhibitory effects of recAP. Platelets of septic shock patients (n=5) showed a 31% (22–34%; p=0.03) more pronounced reactivity compared to healthy volunteers, and this was completely reversed by recAP treatment. In conclusion, we demonstrate that recAP inhibits ex vivo human platelet activation through dephosphorylation of ADP and formation of adenosine as its turnover product. RecAP is able to reverse the platelet hyperreactivity present in septic shock patients. These effects may contribute to the beneficial effects of recAP as a new therapeutic candidate for sepsis-associated AKI.

Funder

Ministry of Research, Technology and Higher Education, Indonesia, and Radboud university medical center

Publisher

Georg Thieme Verlag KG

Subject

Hematology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3