Author:
Schmidt Roland,Redecke Vanessa,Breitfeld Yoshi,Wantia Nina,Miethke Thomas,Massberg Steffen,Fischel Sina,Neumann Franz-Josef,Schömig Albert,May Andreas
Abstract
Summary
Chlamydia (C.) pneumoniae are thought to infect monocytes and use them as vectors into the vessel wall, where they may accelerate atherosclerosis. We investigated the effects of C. pneumoniae on monocytic matrix metalloproteinase (MMP) activation with focus on the role of the extracellular matrix metalloproteinase inducer EMMPRIN. Human monocytes or monocytic MonoMac6 cells were infected with C. pneumoniae. Infection enhanced mRNA-and surface expression of EMMPRIN and Membrane-type-1 Matrix Metalloproteinase (MT1-MMP), plus the secretion of MMP-7, MMP-9 and the urokinase receptor (uPAR). Chlamydial heat shock protein 60 was identified to be partially responsible for EMMPRIN and MMP-9 induction, while C. trachomatis-infection had no stimulatory effect, indicatinga C. pneumoniae-specific activation pathway. Suppression of EMMPRIN by gene silencing almost completely hindered the induction of MT1-MMP and MMP-9 by C. pneumoniae, suggesting a predominant regulatory role for EMMPRIN. Moreover, C. pneumoniae-infected monocytes exhibited increased MMP-and plasmin-dependent migration through “matrigel”. Additionally, incubation of SMCs with supernatants of C. pneumoniae-infected monocytes induced MMP-2 activation, which was inhibited by IL1-Receptor antagonist or anti-IL-6-mAb, indicating paracrine intercellular activation pathways. In conclusion,C. pneumoniae induce MMP activity directly in monocytes through an EMMPRINdependent pathway and indirectly in SMCs via monocytederived cytokines.
Cited by
28 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献