Regulation by DDAH/ADMA pathway of lipopolysaccharideinduced tissue factor expression in endothelial cells

Author:

Jia Su-Jie,Song Kui,Wang Guang-Ping,Li Yuan-Jian,Xin Hong-Ya,Jiang De-Jian,Chen Fang-Ping

Abstract

SummaryPrevious studies have shown the regulatory effect of nitric oxide (NO) on endotoxin-induced tissue factor (TF) in endothelial cells. Asymmetric dimethylarginine (ADMA), a major endogenous NO synthase (NOS) inhibitor, could inhibit NO production in vivo and in vitro. ADMA and its major hydrolase dimethylarginine dimethylaminohydrolase (DDAH) have recently been thought of as a novel regulatory system of endogenous NO production. The aim of the present study was to determine whether the DDAH/ADMA pathway is involved in the effect of lipopolysaccharide (LPS) on TF expression in endothelial cells. Human umbilical vein endothelial cells (HUVECs) were treated with LPS (1 µ g/ml) to induce TF expression. Exogenous ADMA significantly enhanced the increase in both TF mRNA level and activity induced by LPS, whereas L-arginine, the NOS substrate, markedly attenuated the LPS-induced TF increment. LPS markedly increased the level of ADMA in cultured medium and decreased DDAH activity in endothelial cells, and overexpression of DDAH2 could significantly suppress LPS-induced TF increment in endothelial cells. LPS could increase intracellular reactive oxygen species (ROS) production and activate nuclear factor-κ B, which were enhanced by exogenous ADMA and attenuated by either L-arginine or overexpression of DDAH2. Therefore, our present results for the first time suggest that the DDAH/ADMA pathway can regulate LPS-inducedTF expression via ROS-nuclear factor- κ B-dependent pathway in endothelial cells.

Funder

National Postdoctoral Science Foundation

Publisher

Georg Thieme Verlag KG

Subject

Hematology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3