Thrombin activation of endometrial endothelial cells: A possible role in intrauterine growth restriction

Author:

Huang Se-Te,Schatz Frederick,Salafia Carolyn,Stocco Carlos,Lockwood Charles,Krikun Graciela

Abstract

SummaryPreeclampsia (PE), intrauterine growth restriction (IUGR) and abruption with or without fetal loss are associated with reduced uteroplacental blood flow, decidual vasculopathy, endothelial cell dysfunction, thrombosis, inflammation and hemorrhage. Our hypothesis is that reduced uteroplacental blood flow causes focal decidual hypoxia that generates vascular endothelial growth factor (VEGF). The latter acts directly on decidual endothelial cells to induce aberrant expression of tissue factor (TF), the primary initiator of coagulation. This in turn generates thrombin that induces: i) further TF expression; and ii) inflammatory cytokines. BothVEGF and TF induce aberrant angiogenesis-vessel maintenance reflected by endothelial cell fenestrations and induction of a prothrombotic surface causing both the decidual hemorrhage (i.e.abruption) and thrombosis (i.e.uteroplacental vascular insuf- ficiency) observed in these adverse pregnancy outcomes. This novel hypothesis is supported by our finding of TF expression in decidual endothelium of pregnancies complicated by IUGR and/ or fetal loss. Moreover, treatment of cultured endometrial endothelial cells with VEGF or thrombin induces TF protein and mRNA expression. Quantitative RT-PCR analysis indicates that thrombin enhances (>10-fold) the output of diverse inflammatory cytokines in these cultures. The greatest effect (>2-log) was seen on macrophage inflammatory protein 3 α (MIP3 α ). In vitro, thrombin results in endometrial endothelial cell aggregations and changes in the apoptotic pathway. Thus, we postulate that reductions in uteroplacental flow initiate a cascade of molecular effects leading to hypoxia, thrombosis, inflammation, and endothelial cell dysfunction resulting in untoward pregnancy outcomes.

Funder

NIH

Publisher

Georg Thieme Verlag KG

Subject

Hematology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3