Interaction of high-molecular-weight kininogen with endothelial cell binding proteins suPAR, gC1qR and cytokeratin 1 determined by Surface Plasmon Resonance (BiaCore)

Author:

Ghebrehiwet Berhane,Joseph Kusumam,Kao Alice,Bdeir Khalil,Cines Douglas,Pixley Robin,Espinola Ricardo,Colman Robert

Abstract

SummaryThe physiologic activation of the plasma kallikrein-kinin system requires the assembly of its constituents on a cell membrane. High-molecular-weight kininogen (HK) and cleaved HK (HKa) both interact with at least three endothelial cell binding proteins: urokinase plasminogen activator receptor (uPAR), globular C1q receptor (gC1qR,) and cytokeratin 1 (CK1). The affinity of HK and HKa for endothelial cells are KD=7–52 nM. The contribution of each protein is unknown. We examined the direct binding of HK and HKa to the soluble extracellular form of uPAR (suPAR), gC1qR and CK1 using surface plasmon resonance. Each binding protein linked to a CM-5 chip and the association, dissociation and KD (equilibrium constant) were measured. The interaction of HK and HKa with each binding protein was zinc-dependent. The affinity for HK and HKa was gC1qR>CK1>suPAR, indicating that gC1qR is dominant for binding. The affinity for HKa compared to HK was the same for gC1qR, 2.6-fold tighter for CK1 but 53-fold tighter for suPAR. Complex between binding proteins was only observed between gC1qR and CK1 indicating that a binary CK1-gC1qR complex can form independently of kininogen. Although suPAR has the weakest affinity of the three binding proteins, it is the only one that distinguished between HK and HKa. This finding indicates that uPAR may be a key membrane binding protein for differential binding and signalling between the cleaved and uncleaved forms of kininogen. The role of CK1 and gC1qR may be to initially bind HK to the membrane surface before productive cleavage to HKa.

Funder

NIH

Publisher

Georg Thieme Verlag KG

Subject

Hematology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3