More than one intracellular processing bottleneck delays the secretion of coagulation factor VII

Author:

Kristensen Claus,Steenstrup Thomas D.,Bolt Gert

Abstract

SummaryCoagulation factorVII (FVII) is a vitamin K-dependent glycoprotein that undergoes extensive post-translational modification prior to secretion. Secretion of FVII proteins from producer cells is a slow process. To identify bottlenecks for the transport of FVII through the secretory pathway of FVII-producing cells, we analysed the processing of intracellular FVII by pulse-chase of FVII producing CHO cells followed by radioimmuno precipitation, SDS-PAGE, and autoradiography. FVII was coprecipitated with GRP78 and vice versa for at least three hours after synthesis of the labelled FVII, suggesting that nascent FVII is retained in the endoplasmic reticulum (ER). Judged from barium citrate precipitation assay, gamma-carboxylation of the pulse-labelled FVII was a slow process requiring several hours and seemed to be the most important bottleneck in the intracellular processing of FVII. Nevertheless, FVII was not released from the cells immediately after gamma-carboxylation. Gamma-carboxylated FVII accumulated in the cells and migrated as a band with reduced mobility compared to uncarboxylated FVII. This shift in migration was caused by N-glycan processing in the Golgi complex. Thus, the release of FVII from producer cells is delayed by at least two bottlenecks. The major bottleneck appears to be gamma-carboxylation, which determines the rate of transport of FVII out of the ER. Another bottleneck retains FVII in the cells after processing of the N-glycans into complex chains. Cells with an intact gamma-carboxylation machinery appear to posses mechanisms that protect nascent FVII from intracellular degradation and keep FVII in the ER until it is gamma-carboxylated.

Publisher

Georg Thieme Verlag KG

Subject

Hematology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3