Molecular characterization of four ADAMTS13 mutations responsible for congenital thrombotic thrombocytopenic purpura (Upshaw-Schulman syndrome)

Author:

Hommais Antoine,Rayes Julie,Houllier Anne,Obert Bernadette,Legendre Paulette,Veyradier Agnes,Ribba Anne-Sophie,Girma Jean-Pierre

Abstract

SummaryADAMTS13 mutations S203P, R268P, R507Q and A596V were previously identified in French patients with hereditary thrombotic thrombocytopenic purpura (TTP) (Upshaw-Schulman syndrome). Mutated recombinant (r) ADAMTS13 were transiently expressed in COS-7 cells and characterized in comparison with wild-type (WT) rADAMTS13.ADAMTS13 antigen was qualitatively and quantitatively estimated by electrophoretic analysis and ELISA. Enzymatic activity was qualitatively and quantitatively estimated using GST-VWF73,FRETS-VWF73 fragments and full-length rVWF-WT as substrates. The four mutants and rADAMTS13-WT were present within the cells. Secretion level of rADAMTS13-WT reached 1,200 ng/ml. The four mutations strongly altered the secretion and biological activity of rADAMTS13. The percentage secretion was 21, 38 and 17% for rADAMTS13-S203P, -R268P and -A596V compared with rADAMTS13- WT. rADAMTS13-R507Q concentration was under the detection limit of the assay. In the four cases, no enzymatic activity was detected. After concentration, we confirmed that mutations S203P and R268P totally abolished the proteolytic activity of ADAMTS13. Due to the very low protease concentration, activity of rADAMTS13-R507Q was below the threshold of the assays. rADAMTS13-A596V had no proteolytic activity towards the full-length rVWF-WT whereas it exhibited a decreased specific activity of about 30% of that of rADAMTS13- WT towards FRETS-VWF73 fragment. Binding study of mutated rADAMTS13-S203P, -R268P and -A596V showed that the three mutations strongly decreased the interaction of ADAMTS13 with VWF. In conclusion, the four mutations, which led to a secretion defect, a loss of enzymatic activity and a decreased binding to the substrate, are responsible for the hereditary TTP in patients.

Publisher

Georg Thieme Verlag KG

Subject

Hematology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3