Manganese-induced integrin affinity maturation promotes recruitment of αVβ3 integrin to focal adhesions in endothelial cells: evidence for a role of phosphatidylinositol 3-kinase and Src

Author:

Dormond Olivier,Ponsonnet Lionel,Hasmim Meriem,Foletti Alessandro,Rüegg Curzio

Abstract

SummaryIntegrin activity is controlled by changes in affinity (i.e. ligand binding) and avidity (i.e. receptor clustering). Little is known, however, about the effect of affinity maturation on integrin avidity and on the associated signaling pathways. To study the effect of affinity maturation on integrin avidity, we stimulated human umbilical vein endothelial cells (HUVEC) with MnCl2 to increase integrin affinity and monitored clustering of β1 and β3 integrins. In unstimulated HUVEC, β1 integrins were present in fibrillar adhesions, while αVβ3 was detected in peripheral focal adhesions. Clustered β1 and β3 integrins expressed high affinity/ligand-induced binding site (LIBS) epitopes. MnCl2-stimulation promoted focal adhesion and actin stress fiber formation at the basal surface of the cells, and strongly enhanced mAb LM609 staining and expression of β3 high affinity/LIBS epitopes at focal adhesions. MnCl2-induced αVβ3 clustering was blocked by a soluble RGD peptide, by wortmannin and LY294002, two parmacological inhibitors of phosphatidylinositol 3-kinase (PI 3-K), and by over-expressing a dominant negative PI 3-K mutant protein. Conversely, over-expression of active PI 3-K and pharmacological inhibiton of Src with PP2 and CGP77675, enhanced basal and manganese-induced αVβ3 clustering. Transient increased phosphorylation of protein kinase B/Akt, a direct target of PI 3K, occurred upon manganese stimulation. MnCl2 did not alter β1 integrin distribution or β1 high-affinity/LIBS epitope expression. Based on these results, we conclude that MnCl2-induced αVβ3 integrin affinity maturation stimulates focal adhesion and actin stress fiber formation, and promotes recruitment of high affinity αVβ3 to focal adhesions. Affinity-modulated αVβ3 clustering requires PI3-K signaling and is negatively regulate by Src.

Funder

Swiss National Science Foundation

Oncosuisse

National Center of Competence in Research (NCCR) Molecular Oncology, a research instrument of the Swiss National Science Foundation

Publisher

Georg Thieme Verlag KG

Subject

Hematology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3