A point mutation in the EGF-4 domain of β3 integrin is responsible for the formation of the Seca platelet alloantigen and affects receptor function

Author:

Sachs Ulrich J.,Bakchoul Tamam,Eva Olga,Giptner Astrid,Bein Gregor,Aster Richard H.,Gitter Maria,Peterson Julie,Santoso Sentot

Abstract

SummaryNeonatal alloimmune thrombocytopenia (NAIT) is caused by fetomaternal platelet incompatibility with maternal antibodies crossing the placenta and destroying fetal platelets. Antibodies against human platelet antigen-1a (HPA-1a) and HPA-5b are responsible for the majority of NAIT cases. We observed a suspected NAIT in a newborn with a platelet count of 25 G/l and petechial haemorrhages. Serological analysis of maternal serum revealed an immunisation against αIIbβ3 on paternal platelets only, indicating the presence of an antibody against a new rare alloantigen (Seca) residing on αIIbβ3. The location of Seca on αIIbβ3 was confirmed by immunoprecipitation. Nucleotide sequence analysis of paternal β3 revealed a single nucleotide exchange (G1818T) in exon 11 of the β3 gene (ITGB3), changing Lys580 (wild-type) to Asn580 (Seca). Two additional members of the family Sec were typed Seca positive, but none of 300 blood donors. Chinese hamster ovary cells expressing Asn580, but not Lys580 αIIbβ3, bound anti-Seca, which was corroborated by immunoprecipitation. Adhesion of transfected cells onto immobilised fibrinogen showed reduced binding of the Asn580 variant compared to wild-type αIIbβ3. Analysis of transfected cells with anti-LIBS and PAC-1 antibody showed reduced binding when compared to the wild-type. No such effects were observed with Seca positive platelets, which, however, are heterozygous for the Lys580Asn mutation. In this study, we describe a NAIT case caused by maternal alloimmunisation against a new antigen on αIIbβ3. Analysis with mutant transfected cells showed that the Lys580Asn mutation responsible for the formation of the Seca antigenic determinant affects αIIbβ3 receptor function.

Publisher

Georg Thieme Verlag KG

Subject

Hematology

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3