Expression of transcription factor Oct-4 and other embryonic genes in CD133 positive cells from human umbilical cord blood

Author:

Baal Nelli,Reisinger Kerstin,Jahr Henning,Bohle Rainer,Liang Olin,Münstedt Karsten,Rao C.V.,Preissner Klaus,Zygmunt Marek

Abstract

SummaryA significant number of hematopoietic stem/progenitor cells (HSPC) in human umbilical cord blood could serve as a reservoir for the placental vasculature, yet, their morphological and functional features are not completely understood. Here, we describe the characterization of purified CD133+ progenitor cells from umbilical cord blood, a subset of CD34+ hematopoietic progenitors that were grown in proliferation medium containing Flt3-ligand, thrombopoietin and stem cell factor. Following isolation and enrichment of the CD133+ cells by immunomagnetic cell sorting, they remained non-adherent for up to 40 days in culture and expressed different pluripotency markers including Sox-1, Sox-2, FGF-4, Rex-1 and Oct-4. Oct-4 expression was confirmed by laser-assisted single cell picking with subsequent quantitative real-time RT-PCR.The expression of Oct-4 indicates a pluripotent phenotype of CD133+ cells and appears to be of functional relevance: After three weeks in endothelial differentiation medium, suspended cells became adherent, developed an endothelial cell-like morphology, bound fluoresceine isothiocyanate-labeled Ulex europaeus agglutinin-1, took up acetylated Di-LDL, and expressed other endothelial markers such as PECAM-1 or VEGFR-2. Concomitantly, Oct-4 expression was significantly reduced. Moreover, following treatment with retinoic acid, CD133+ cells exhibited neural morphology associated with the expression of β-III-tubulin. CD133+ cells were found to express the luteinizing hormone/human chorionic gonadotropin (LH/hCG) receptor, detected by RT-PCR and immunocytochemistry. The recombinant human chorionic gonadotropin induced proliferation of the CD133+ cells in a dose-specific manner. Our results indicate that CD133+ HSPC from umbilical cord blood may have a greater differentiation potential than previously recognized and give rise to proliferative endothelial cells participating in placental vasculogenesis.

Funder

Deutsche Forschungsgesellschaft, Bonn, Germany

Publisher

Georg Thieme Verlag KG

Subject

Hematology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3