Stent-induced neutrophil activation is associated with an oxidative burst in the inflammatory process, leading to neointimal thickening

Author:

Kato Toru,Hikichi Yutaka,Hashimoto Shigemasa,Hirase Tetsuaki,Morooka Toshifumi,Imoto Yoshitaka,Takeda Yuji,Sendo Fujiro,Node Koichi,Inoue Teruo

Abstract

SummaryActivation of leukocytes plays an essential role in the mechanism of restenosis. Prior research has focused on monocytes and little is known about the role of neutrophils in this process. Neutrophils are known to contribute to tissue injury through oxygen-derived free radicals that nitrate tyrosine. This study was designed to elucidate clinically the role of neutrophil-mediated oxidative burst in the regulation of the post-stent inflammatory process. In 36 patients undergoing coronary stenting, we serially measured serum levels of glycosyl-phosphatidil-inositol-anchored protein (GPI)-80, a modulator of Mac-1 on the surface of neutrophils, in samples of coronary sinus as well as peripheral blood. We also simultaneously measured the serum 3-nitrotyrosine/tyrosine ratio as an index of oxidative stress. The GPI-80 level and the 3-nitrotyrosine/tyrosine ratio increased in the coronary sinus after coronary stenting in a time-dependent manner; with the maximum increase of GPI-80 level (3.1±2.9 to 8.6±4.3 ng/ml, P<0.01) at 48 hours, and 3-nitrotyrosine/tyrosine ratio at 24 hrs (5.2±4.8 to 28.4±13.2 ×10−4, P<0.01), more strikingly than in the peripheral blood. In the coronary sinus blood, the 3-nitrotyrosine/tyrosine ratio was correlated with GPI-80 levels at 24 hr (R=0.58, P<0. 001) and at 48 hr (R=0.41, P<0.01). Multiple regressions analysis showed that the maximum responses of GPI-80 level and 3-nitrotyrosine/tyrosine ratio were independent predictors of angiographic late lumen loss. Our results may supporta hypothesis that Mac-1-dependent activation of neutrophils causes oxidative burst in the post-stent inflammatory process, possibly leading to restenosis.

Publisher

Georg Thieme Verlag KG

Subject

Hematology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3