Wiskott-Aldrich syndrome iPS cells produce megakaryocytes with defects in cytoskeletal rearrangement and proplatelet formation

Author:

Ingrungruanglert Praewphan,Amarinthnukrowh Pramuk,Rungsiwiwut Ruttachuk,Maneesri-le Grand Supang,Sosothikul Darintr,Shotelersuk Vorasuk,Suphapeetiporn Kanya,Israsena Nipan

Abstract

SummaryWiskott-Aldrich syndrome (WAS) is an X-linked recessive disorder characterised by microthrombocytopenia, complex immunodeficiency, autoimmunity, and haematologic malignancies. It is caused by mutations in the gene encoding WAS protein (WASP), a regulator of actin cytoskeleton and chromatin structure in various blood cell lineages. The molecular mechanisms underlying microthrombocytopenia caused by WASP mutations remain elusive. Murine models of WASP deficiency exhibited only mild thrombocytopenia with normal-sized platelets. Here we report on the successful generation of induced pluripotent stem cell (iPSC) lines from two patients with different mutations in WASP (c.1507T>A and c.55C>T). When differentiated into early CD34+ haematopoietic and megakaryocyte progenitors, the WAS-iPSC lines were indistinguishable from the wild-type iPSCs. However, all WAS-iPSC lines exhibited defects in platelet production in vitro. WAS-iPSCs produced platelets with more irregular shapes and smaller sizes. Immunofluorescence and electron micrograph showed defects in cytoskeletal rearrangement, F-actin distribution, and proplatelet formation. Proplatelet defects were more pronounced when using culture systems with stromal feeders comparing to feeder-free culture condition. Overexpression of WASP in the WAS-iPSCs using a lentiviral vector improved proplatelet structures and increased the platelet size. Our findings substantiate the use of iPSC technology to elucidate the disease mechanisms of WAS in thrombopoiesis.

Publisher

Georg Thieme Verlag KG

Subject

Hematology

Cited by 38 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3