Recombinant albumins containing additional peptide sequences smaller than barbourin retain the ability of barbourin-albumin to inhibit platelet aggregation

Author:

Wilson Brianna,Eltringham-Smith Louise,Gataiance Sharon,Bhakta Varsha,Sheffield William

Abstract

SummaryThe previously described fusion protein BLAH6 (Marques JA et al., Thromb Haemost 2001; 86: 902–8) is a recombinant protein that combines the small disintegrin barbourin with hexahisti-dine-tagged rabbit serum albumin (RSA) produced in Pichia pastoris yeast. We sought to determine: (1) if BLAH6 was immunogenic; and (2) if its barbourin domain could be productively replaced with smaller peptides. Purified BLAH6 was injected into rabbits, and anti-barbourin antibodies were universally detected in plasma 28 days later; BLAH6 was, however, equally effective in reducing platelet aggregation in both naïve and pre-treated rabbits. Thrombocytopenia was not observed, and complexing BLAH6 to αIIbβ3 had no effect on antibody detection. The bar-bourin moiety of BLAH6 was replaced with each of four sequences: Pep I (VCKGDWPC); Pep II (VCRGDWPC); Pep III (barbourin 41–54); and Pep IV (LPSPGDWR). The corresponding fusion proteins were tested for their ability to inhibit ADP-induced platelet aggregation. Pep III-LAH6 inhibited neither rabbit nor human platelets. Pep I-LAH6 and Pep IV-LAH6 inhibited rabbit platelet aggregation as effectively as BLAH6, but Pep IV-LAH6 did not inhibit human platelet aggregation. Pep I-LAH6 and Pep II LAH6 inhibited human platelet aggregation with IC50s 10– and 20-fold higher than BLAH6. Cross-immunoprecipitation assays with human platelet lysates confirmed that all proteins and peptides interacted with the platelet integrin αIIbβ3, but with greatly varying affinities. Our results suggest that the antiplatelet activity of BLAH6 can be retained in albumin fusion proteins in which smaller peptides replace the barbourin domain; these proteins may be less immunogenic than BLAH6.

Funder

Grant-In-Aid T4612 from the Heart and Stroke Foundation of Ontario

Publisher

Georg Thieme Verlag KG

Subject

Hematology

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3