Perturbation of the heparin/heparin-sulfate interactome of human breast cancer cells modulates pro-tumourigenic effects associated with PI3K/Akt and MAPK/ERK signalling

Author:

Chen Yunliang,Scully Michael,Dawson Gloria,Goodwin Christopher,Xia Min,Lu Xinjie,Kakkar Ajay

Abstract

SummaryHeparansulfate-proteoglycans (HSPGs) interact via their polyanionic heparansulfate (HS) side chains with a variety of proteins on the cell surface or within the extracellular matrix membrane. The large number of heparin/HS binding proteins form a highly interconnected functional network, which has been termed as the heparin/HS interactome and is functionally linked to physiological and pathological processes. The aim of this study was to investigate the global effect of these protein-HSPG interactions on the tumourigenicity of two breast cancer cell lines (MCF-7 and MDA-MB-231). Cancer cells were cultured in serum-free medium and treated with a concentration of heparin which was capable of modulating HS/ligand interaction. Microarray analysis of MCF-7 cells cultured under these conditions showed that expression of 105 of 1,357 genes potentially related to the pathogenesis of breast neoplasm was significantly altered by heparin treatment. The changes in gene expression correlated with a less tumourigenic phenotype, including reduction of cell adhesive, invasive and migratory properties. These effects were associated with an inhibition of the PI3K/Akt and Raf/MEK/ERK signalling pathways. The modulatory effect of heparin on HS-associated activity was confirmed with one example of heparin/HS interactomes, transforming growth factor β (TGFβ). The innate TGFβ activity of MCF-7 cells was reduced by heparin treatment, with specific interruption of the TGFβ–Smad signalling pathway. The pro-tumourigenic contribution of the heparin/HS interactomes was verified in cells in which HSPG synthesis was blocked using β-xyloside. In conclusion, the interaction between cell surface HPSGs and innate heparin/HS interactomes makes a significant contribution to the tumourigenicity.

Publisher

Georg Thieme Verlag KG

Subject

Hematology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3