Moderate-intensity exercise suppresses platelet activation and polymorphonuclear leukocyte interaction with surface-adherent platelets under shear flow in men

Author:

Liao Chang-Hui,Wang Jong-Shyan

Abstract

SummaryThe reciprocal modulation of platelet and polymorphonuclear leukocyte (PMN) activities is important in the pathogenesis of thrombosis and inflammation. This study investigated how moderate exercise affects shear-induced platelet activation and subsequent PMNs interaction with platelet-related thrombi under shear flow. Sixteen sedentary healthy men engaged in moderate exercise (about 60% V·O2max) on a bicycle ergometer. Platelet activation, PMNs interaction with surface-adherent platelets, and PMN-dependent inhibition of platelet activation under shear flow were measured both before and immediately after exercise. The results of this study can be summarized as follows: (1) moderate exercise was associated with lower extents of shear-induced platelet adhesion and aggregation, binding of von Willbrand factor (vWF) to platelets, and glycoprotein IIb/IIIa activation and P-selectin expression on platelet than at rest; (2) the velocity and percentage of rolling PMNs increased while the number of PMNs remaining bound to surface-adherent platelets decreased after moderate exercise; (3) although treating the PMNs with oxidized-low density lipoprotein (Ox-LDL) enhanced PMNs interaction with surface-adherent platelets, moderate exercise suppressed the enhancement of platelet-PMN interaction by Ox-LDL; (4) moderate exercise decreased platelet [Ca2+]i elevation induced by ADP and platelet [Ca2+]i levels mediated by PMN and Ox-LDL-treated PMN; and (5) plasma and PMN-derived nitric oxide metabolites and plasma vWF antigen and activity increased after moderate exercise, whereas plasma and platelet-derived soluble P-selectin levels remained unchanged in response to exercise. Therefore, we conclude that moderate-intensity exercise suppresses shear-induced platelet activation and subsequent PMNs adhesion to platelets deposited at sites of vascular injury under flow, thereby reducing the risks of vascular thrombosis and inflammation.

Funder

National Science Council

Publisher

Georg Thieme Verlag KG

Subject

Hematology

Cited by 34 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3