The role of platelets and recombinant factor VIIa on thrombin generation, platelet activation and clot formation

Author:

Chakroun Tahar,Depasse François,Arzoglou Pantelis,Samama Meyer,Elalamy Ismail,Gerotziafas Grigoris

Abstract

SummaryIn the present study we assessed the effect of platelet counts and rFVIIa on thrombin generation, platelet activation and clot formation after tissue factor pathway activation in human plasma aiming to investigate the mechanism by which rFVIIa induces haemostasis in patients with severe thrombocytopenia. Plasma samples with platelet counts from 5 ×109/l to 150 ×109/l were spiked with rFVIIa (1 µg/ml) or buffer. Clotting was initiated in the presence of diluted thromboplastin. Thrombin generation was assessed using the Thrombogram-Thrombinoscope™ assay. The kinetics of platelet activation was assessed using flow cytometry to measure the expression the Pselectin on platelet membrane of washed platelets suspended in defibrinated homologous PPP. Thromboelastography was used to evaluate the effect of platelets and rFVIIa on the kinetics of clot formation and clot’s firmness. In the presence of low platelet counts the endogenous thrombin potential (ETP) and the maximum concentration of generated thrombin (Cmax) were reduced by 60%-70%.The lag-time of thrombin generation and the time required to reach the Cmax (Tmax) were prolonged, the velocity of platelet activation was decreased and thrombus formation was delayed. Recombinant FVIIa accelerated thrombin generation and platelet activation but it did not significantly modify ETP or Cmax. Recombinant FVIIa enhanced platelet activation in a TF and thrombin dependent manner since its effect on the studied parameters was abolished when TF was omitted or when hirudin was added into the experimental system respectively. Recombinant FVIIa normalized the velocity of clot formation but it did not modify clot firmness, which depended mainly on platelets’ count. In conclusion, in experimental conditions simulating severe thrombocytopenia rFVIIa in the presence of low amounts of TF, accelerates thrombin generation, without increasing the maximum amount of generated thrombin, thus leading in enhanced platelet activation and rapid clot formation.

Publisher

Georg Thieme Verlag KG

Subject

Hematology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3