Author:
Rauch Antoine,Legendre Paulette,Christophe Olivier,Goudemand Jenny,Belle Eric van,Vincentelli André,Denis Cécile,Susen Sophie,Lenting Peter
Abstract
SummaryHaemorrhagic episodes in patients carrying circulatory assist devices represent a severe life-threatening clinical complication. These bleeding episodes may originate from a reduced functionality of von Willebrand factor (VWF), a multimeric protein pertinent to the formation of a haemostatic plug. It has been reported that the reduced functionality is due to increased proteolytic degradation by the enzyme ADAMTS13, a phenomenon that is facilitated by device-induced increases in shear stress to which VWF is exposed. Here, we have tested a series of VWF-derived protein fragments and monoclonal murine anti-VWF antibodies for their capacity to reduce shear stress-dependent degradation of VWF. Via direct binding experiments, we identified an anti-VWF antibody that partially blocked VWF-ADAMTS13 interactions (46 ± 14%). Epitope mapping experiments revealed that the antibody, designated mAb508, is directed against the distal portion of the VWF D4-domain (residues 2134–2301) and recognises a synthetic peptide encompassing residues 2158–2169. Consistent with its partial inhibition of VWF-ADAMTS13 interactions in binding assays, mAb508 reduced ADAMTS13-mediated VWF degradation in a vortex-based degradation assay by 48 ± 10%. In a HeartMateII-based whole bloodperfusion system, mAb508 was able to reduce degradation of highmolecular- weight (HMW)-VWF-multimers dose-dependently, with a maximal inhibition (83 ± 8%) being reached at concentrations of 10 μg/ml or higher. In conclusion, we report that partial inhibition of VWF-ADAMTS13 interactions using an anti-VWF antibody can prevent excessive degradation of HMW-VWF multimers. This strategy may be used for the development of therapeutic options to treat bleeding episodes due to shear stress-dependent VWF degradation, for instance in patients carrying circulatory assist devices.
Cited by
38 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献