Induction of plasminogen activator inhibitor 1 by the PPARα ligand, Wy-14,643, is dependent on ERK1/2 signaling pathway

Author:

Banfi Cristina,Auwerx Johan,Poma Federica,Tremoli Elena,Mussoni Luciana

Abstract

SummaryImpairment of the fibrinolytic system, mostly due to elevated plasma levels of plasminogen activator inhibitor 1 (PAI-1), is often associated with metabolic disorders such as diabetes mellitus and insulin-resistance syndrome. Moreover, insulin, as we have previously shown, directly stimulates PAI-1 production with a mechanism underlying a complex signaling network which ultimately leads to ERK activation.In this study we have analyzed the effects of agonists of the per-oxisome proliferator-activated receptor (PPAR) alpha and gamma on PAI-1 biosynthesis in HepG2 cells in the presence or absence of insulin. The high affinity PPARα agonist, Wy-14,643, increased basal and insulin-stimulated PAI-1 antigen release with a mechanism involving gene transcription. We then investigated whether the MAP kinase pathway also plays a role in the stimulatory properties of Wy-L4,643. Wy-L4,643 increases phosphorylation of ERK and p38 in a time-dependent manner without affecting that of SAPK/JNK or ERK5. Moreover, the MEK (ERK kinase) inhibitors, PD98059 and UO126, completely prevented PAI-1 induction by Wy-14,643 without inhibiting the activation of a reporter gene carrying the PPRE element. Interestingly, the addition of p38 inhibitor followed by insulin and Wy-14,643 resulted in a greater than additive stimulation of PAI-1 secretion acting through ERK1/2 phosphorylation.In contrast, the synthetic PPARγ agonist, rosiglitazone, did not change PAI-1 level, although this compound induced transcription from the PPRE-driven luciferase reporter construct.In conclusion, Wy-14,643 induces PAI-1 gene expression, in the presence or absence of insulin, with a mechanism which is independent on PPARα activation and requires signaling through the ERK1/2 signaling pathway.

Funder

Human Frontier Science Program

Publisher

Georg Thieme Verlag KG

Subject

Hematology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3