Involvement of IRAKs and TRAFs in anti-β2GPI/β2GPI-induced tissue factor expression in THP-1 cells

Author:

Guo Donglin,Zhou Fang,Chen Dongdong,Xie Hongxiang,Wang Ting,Wang Haibo,Xu Guoying,Wen Haiping,Hong Zhou

Abstract

SummaryOur previous study has shown that Toll-like receptor 4 (TLR4) and its signalling pathway contribute to anti-β2-glycoprotein I/β2-glycoprotein I (anti-β2GPI/β2GPI)-induced tissue factor (TF) expression in human acute monocytic leukaemia cell line THP-1 and annexin A2 (ANX2) is involved in this pathway. However, its downstream molecules have not been well explored. In this study, we have established that interleukin-1 receptor-associated kinases (IRAKs) and tumour necrosis factor receptor-associated factors (TRAFs) are crucial downstream molecules of anti-β2GPI/β2GPI-induced TLR4 signaling pathway in THP-1 cells and explored the potential mechanisms of their self-regulation. Treatment of THP-1 cells with anti-β2GPI/β2GPI complex induced IRAKs and TRAFs expression and activation. Anti-β2GPI/β2GPI complex firstly induced expression of IRAK4 and IRAK1, then IRAK1 phosphorylation and last IRAK3 upregulation. In addition, anti-β2GPI/β2GPI complex simultaneously and acutely enhanced mRNA levels of TRAF6, TRAF4 and zinc finger protein A20 (A20), while chronically increased A20 protein level. Moreover, anti-β2GPI/β2GPI complex-induced IRAKs and TRAFs expression and activation were attenuated by knockdown of ANX2 by infection with ANX2-specific RNA interference lentiviruses (LV-RNAi-ANX2) or by treatment with paclitaxel, which inhibits TLR4 as an antagonist of myeloid differentiation protein 2 (MD-2) ligand. Furthermore, both IRAK1/4 inhibitor and a specific proteasome inhibitor MG-132 could attenuate TRAFs expression as well as TF expression induced by anti-β2GPI/β2GPI complex. In conclusion, our results indicate that IRAKs and TRAFs play important roles in anti-β2GPI/β2GPI-stimulated TLR4/TF signaling pathway in THP-1 cells and contribute to the pathological processes of antiphospholipid syndrome (APS).

Funder

National Natural Science Foundation of China

Publisher

Georg Thieme Verlag KG

Subject

Hematology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3