Can the Velocity of a 1RM Hang Power Clean Be Used to Estimate a 1RM Hang High Pull?

Author:

Suchomel Timothy J.12,Techmanski Baylee S.13,Kissick Cameron R.14,Comfort Paul25

Affiliation:

1. Department of Human Movement Sciences, Carroll University, Waukesha, Wisconsin;

2. Directorate of Sport, Exercise, and Physiotherapy, University of Salford, Salford, Greater Manchester, United Kingdom;

3. Athlete Performance, Mequon, Wisconsin;

4. New York Mets, Queens, New York; and

5. Strength and Power Research Group, School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia

Abstract

Abstract Suchomel, TJ, Techmanski, BS, Kissick, CR, and Comfort, P. Can the velocity of a 1RM hang power clean be used to estimate a 1RM hang high pull? J Strength Cond Res 38(7): 1321–1325, 2024—The purpose of this study was to estimate the 1-repetition maximum hang high pull (1RM HHP) using the peak barbell velocity of a 1RM hang power clean (HPC). Fifteen resistance-trained men (age = 25.5 ± 4.5 years, body mass = 88.3 ± 15.4 kg, height = 176.1 ± 8.5 cm, relative 1RM HPC = 1.3 ± 0.2 kg·kg−1) with previous HPC experience participated in 2 testing sessions that included performing a 1RM HPC and HHP repetitions with 20, 40, 60, and 80% of their 1RM HPC. Peak barbell velocity was measured using a linear position transducer during the 1RM HPC and HHP repetitions performed at each load. The peak barbell velocity achieved during the 1RM HPC was determined as the criterion value for a 1RM performance. Subject-specific linear regression analyses were completed using slope-intercept equations created from the peak velocity of the 1RM HPC and the peak barbell velocities produced at each load during the HHP repetitions. The peak barbell velocity during the 1RM HPC was 1.74 ± 0.30 m·s−1. The average load-velocity profile showed that the estimated 1RM HHP of the subjects was 98.0 ± 19.3% of the 1RM HPC. Although a 1RM HHP value may be estimated using the peak barbell velocity during the HPC, strength and conditioning practitioners should avoid this method because of the considerable variation within the measurement. Additional research examining different methods of load prescription for weightlifting pulling derivatives is needed.

Publisher

Ovid Technologies (Wolters Kluwer Health)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3