Effects of Neuromuscular Training on Muscle Architecture, Isometric Force Production, and Stretch-Shortening Cycle Function in Trained Young Female Gymnasts

Author:

Moeskops Sylvia1,Oliver Jon L.12,Radnor John M.1,Haff G. Gregory3,Myer Gregory D.45678,Ramachandran Akhilesh K.1,Kember Lucy S.1,Pedley Jason S.1,Lloyd Rhodri S.129

Affiliation:

1. Youth Physical Development Centre, Cardiff School of Sport, Cardiff Metropolitan University, Cardiff, United Kingdom;

2. Sports Performance Research Institute New Zealand (SPRINZ), AUT University, Auckland, New Zealand;

3. Strength and Power Research Group, School of Medical and Health Sciences, Edith Cowan University, Joondalup, Australia;

4. Emory Sport Performance and Research Center, Flowery Branch, Georgia;

5. Emory Sports Medicine Center, Atlanta, Georgia;

6. Department of Orthopaedics, Emory University School of Medicine, Atlanta, Georgia;

7. Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia;

8. The Micheli Center for Sports Injury Prevention, Boston, Massachusetts, USA; and

9. Centre for Sport Science and Human Performance, Waikato Institute of Technology, Hamilton, New Zealand

Abstract

Abstract Moeskops, S, Oliver, JL, Radnor, JM, Haff, GG, Myer, GD, Ramachandran, AK, Kember, LS, Pedley, JS, and Lloyd, RS. Effects of neuromuscular training on muscle architecture, isometric force production, and stretch-shortening cycle function in trained young female gymnasts. J Strength Cond Res 38(9): 1640–1650, 2024—This study evaluated the effects of a 10-month neuromuscular training (NMT) intervention on muscle architecture, isometric force production, and stretch-shortening cycle (SSC) function. Thirty-seven girls aged 6–12 years were placed into gymnastics + NMT (gNMT; n = 15), gymnastics only (GYM; n = 10), or maturity-matched control (CON; n = 12) groups. The gNMT group followed a 10-month NMT program in addition to gymnastics training, whereas the GYM group only participated in gymnastics training. Isometric midthigh pull (IMTP) and drop jump (DJ) kinetics were measured, in addition to muscle thickness, fascicle length, and pennation angle of the gastrocnemius medialis at baseline and at 4, 7, and 10 months. A 3 × 4 (group × time) repeated-measures ANCOVA (covariate, % predicted adult height) was used to evaluate within-group changes. Significance level was set at p < 0.05. Significant interaction effects were observed in muscle thickness, absolute (PFabs) and relative peak force (PFrel) in the IMTP and various DJ variables. The gNMT group demonstrated improvements in muscle thickness, IMTP PFabs and PFrel, and DJ kinetics, most commonly evidenced from 7 months onward. The GYM group's muscle thickness also significantly improved, accompanied by improvements in some DJ kinetics. The CON group did not experience any desirable changes. Overall, NMT elicited positive changes in muscle thickness, PFabs and PFrel, and SSC function to a greater extent than gymnastics training alone or growth and maturation. As most adaptations took 7 months, longer-term NMT programs should be implemented with youth female gymnasts.

Publisher

Ovid Technologies (Wolters Kluwer Health)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3