Individuals Can be Taught to Sense the Degree of Vascular Occlusion: Implications for Practical Blood Flow Restriction

Author:

Song Jun Seob,Hammert William B.,Kataoka Ryo,Yamada Yujiro,Kang Anna,Loenneke Jeremy P.

Abstract

Abstract Song, JS, Hammert, WB, Kataoka, R, Yamada, Y, Kang, A, and Loenneke, JP. Individuals can be taught to sense the degree of vascular occlusion: Implications for practical blood flow restriction. J Strength Cond Res 38(8): 1413–1418, 2024—It is currently unknown if individuals can be conditioned to a relative arterial occlusion pressure (AOP) and replicate that pressure at a later time point. The purpose of this study was to determine whether individuals can be taught to sense a certain relative pressure (i.e., target pressure) by comparing a conditioning method with a time-matched non-conditioning control. Fifty-eight subjects completed 2 visits in a randomized order: (a) conditioning condition and (b) time-matched control condition. The conditioning involved 11 series of inflations to 40% AOP for 12 seconds followed by cuff deflation for 22 seconds. The pressure estimations were taken at 5 and 30 minutes after each condition. Data are presented as mean differences (95% credible interval). The absolute error at 5 minutes was greater for the control compared with conditioning condition (7.1 [2.0–12.1] mm Hg). However, this difference in absolute error between conditioning and control was reduced at 30 minutes (2.9 [−1.3 to 7.1] mm Hg). The mean difference and 95% limits of agreement for the control were 8.2 (−42.4 to 58.5) mm Hg at 5 minutes and 0.02 (−43.5 to 43.5) at 30 minutes. The agreements for the conditioning were −6.2 (−32.4 to 20.0) mm Hg at 5 minutes and −11.2 (−36.6 to 14.3) mm Hg at 30 minutes. The results suggest that the individuals can be taught to sense the target pressure, but this effect only lasts a short amount of time. Future work is necessary to refine the conditioning method to extend the duration of this conditioning effect.

Publisher

Ovid Technologies (Wolters Kluwer Health)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3