Using Barbell Acceleration to Determine the 1 Repetition Maximum of the Jump Shrug

Author:

Techmanski Baylee S.12,Kissick Cameron R.3,Loturco Irineu4,Suchomel Timothy J.25

Affiliation:

1. Athlete Performance, Mequon, Wisconsin;

2. Department of Human Movement Sciences, Carroll University, Waukesha, Wisconsin;

3. New York Mets, Queens, New York;

4. Nucleus of High Performance in Sport, Sao Paulo, Brazil; and

5. Directorate of Sport, Exercise, and Physiotherapy, University of Salford, Salford, Greater Manchester, United Kingdom

Abstract

Abstract Techmanski, BS, Kissick, CR, Loturco, I, and Suchomel, TJ. Using barbell acceleration to determine the 1 repetition maximum of the jump shrug. J Strength Cond Res 38(8): 1486–1493, 2024—The purpose of this study was to determine the 1 repetition maximum (1RM) of the jump shrug (JS) using the barbell acceleration characteristics of repetitions performed with relative percentages of the hang power clean (HPC). Fifteen resistance-trained men (age = 25.5 ± 4.5 years, body mass = 88.5 ± 15.7 kg, height = 176.1 ± 8.5 cm, relative 1RM HPC = 1.3 ± 0.2 kg·kg−1) completed 2 testing sessions that included performing a 1RM HPC and JS repetitions with 20, 40, 60, 80, and 100% of their 1RM HPC. A linear position transducer was used to determine concentric duration and the percentage of the propulsive phase (P%) where barbell acceleration was greater than gravitational acceleration (i.e., a>−9.81 m·s−2). Two 1 way repeated measures ANOVA were used to compare each variable across loads, whereas Hedge's g effect sizes were used to examine the magnitude of the differences. Concentric duration ranged from 449.7 to 469.8 milliseconds and did not vary significantly between loads (p = 0.253; g = 0.20–0.39). The P% was 57.4 ± 7.2%, 64.8 ± 5.9%, 73.2 ± 4.3%, 78.7 ± 4.0%, and 80.3 ± 3.5% when using 20, 40, 60, 80, and 100% 1RM HPC, respectively. P% produced during the 80 and 100% 1RM loads were significantly greater than those at 20, 40, and 60% 1RM (p < 0.01, g = 1.30–3.90). In addition, P% was significantly greater during 60% 1RM compared with both 20 and 40% 1RM (p < 0.01, g = 1.58–2.58) and 40% was greater than 20% 1RM (p = 0.003, g = 1.09). A braking phase was present during each load and, thus, a 1RM JS load was not established. Heavier loads may be needed to achieve a 100% propulsive phase when using this method.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Reference52 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3