Acute Effects of Continuous and Intermittent Blood Flow Restriction on Sprint Interval Performance and Muscle Oxygen Responses

Author:

Wizenberg Aaron M.1,Gonzalez-Rojas David1,Rivera Paola M.1,Proppe Christopher E.1,Laurel Kaliegh P.1,Stout Jeffery R.1,Fukuda David H.1,Billaut François2,Keller Joshua L.3,Hill Ethan C.14

Affiliation:

1. Exercise Physiology Intervention and Collaboration Laboratory, School of Kinesiology and Physical Therapy, Division of Kinesiology, University of Central Florida, Orlando, Florida;

2. Department of Kinesiology, Laval University, Quebec, Canada;

3. Integrative Laboratory of Exercise and Applied Physiology, Department of Health, Kinesiology, and Sport, College of Education and Professional Studies, University of South Alabama, Mobile, Alabama; and

4. Florida Space Institute, Partnership I, Research Parkway, University of Central Florida, Orlando, Florida

Abstract

Abstract Wizenberg, AM, Gonzalez-Rojas, D, Rivera, PM, Proppe, CE, Laurel, KP, Stout, JR, Fukuda, DH, Billaut, F, Keller, JL, and Hill, EC. Acute effects of continuous and intermittent blood flow restriction on sprint interval performance and muscle oxygen responses. J Strength Cond Res 37(10): e546–e554, 2023—This investigation aimed to examine the acute effects of continuous and intermittent blood flow restriction (CBFR and IBFR, respectively) during sprint interval training (SIT) on muscle oxygenation, sprint performance, and ratings of perceived exertion (RPE). Fifteen men (22.6 ± 2.4 years; 176 ± 6.3 cm; 80.0 ± 12.6 kg) completed in random order a SIT session with CBFR, IBFR (applied during rest), and no blood flow restriction (NoBFR). Each SIT session consisted of two 30-second all-out sprint tests separated by 2 minutes. Peak power (PP), total work (TW), sprint decrement score (Sdec), RPE, and muscle oxygenation were measured during each sprint. A p value ≤0.05 was considered statistically significant. PP decreased to a greater extent from sprint 1 to sprint 2 during CBFR (25.5 ± 11.9%) and IBFR (23.4 ± 9.3%) compared with NoBFR (13.4 ± 8.6%). TW was reduced similarly (17,835.6 ± 966.2 to 12,687.2 ± 675.2 J) from sprint 1 to sprint 2 for all 3 conditions, but TW was lower (collapsed across time) for CBFR (14,320.7 ± 769.1 J) than IBFR (15,548.0 ± 840.5 J) and NoBFR (15,915.4 ± 771.5 J). There were no differences in Sdec (84.3 ± 1.7%, 86.1 ± 1.5%, and 87.2 ± 1.1% for CBFR, IBFR, and NoBFR, respectively) or RPE, which increased from sprint 1 (8.5 ± 0.3) to sprint 2 (9.7 ± 0.1). Collective muscle oxygenation responses increased across time and were similar among conditions, whereas increases in deoxy[heme] and total[heme] were greatest for CBFR. Applying BFR during SIT induced greater decrements in PP, and CBFR resulted in greater decrements in work across repeated sprints. The larger increases in deoxy[heme] and total[heme] for CBFR suggested it may induce greater metabolite accumulation than IBFR and NoBFR when combined with SIT.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Physical Therapy, Sports Therapy and Rehabilitation,Orthopedics and Sports Medicine,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3