Application of the Ratings of Perceived Exertion-Clamp Model to Examine the Effects of Joint Angle on the Time Course of Torque and Neuromuscular Responses During a Sustained, Isometric Forearm Flexion to Task Failure

Author:

Smith Robert W.ORCID,Housh Terry J.,Anders John Paul V.,Neltner Tyler J.,Arnett Jocelyn E.,Schmidt Richard J.,Johnson Glen O.

Abstract

Abstract Smith, RW, Housh, TJ, Anders, JPV, Neltner, TJ, Arnett, JE, Schmidt, RJ, and Johnson, GO. Application of the ratings of perceived exertion-clamp model to examine the effects of joint angle on the time course of torque and neuromuscular responses during a sustained, isometric forearm flexion to task failure. J Strength Cond Res 37(5): 1023–1033, 2023—The present study used the ratings of perceived exertion (RPE)-clamp model during a sustained, isometric forearm flexion task to failure to determine the effects of joint angle on torque and neuromuscular responses. Twelve college-aged women performed two 3-second maximal voluntary isometric contractions at elbow joint angles (EJ) of 75°, 100°, and 125° before sustained, isometric, forearm flexions anchored to RPE = 7 to task failure (defined as RPE > 7, or the torque was reduced to zero) at EJ75, EJ100, and EJ125. The amplitude (AMP) and frequency (MPF) of the electromyographic (EMG) and mechanomyographic (MMG) signals from the biceps brachii were recorded. Repeated-measures ANOVAs and post hoc comparisons were used to examine differences across time and between joint angles for torque and neuromuscular parameters. A p-value ≤0.05 was considered significant. For each joint angle, there was a decrease (p < 0.05) in torque across the sustained, isometric task. Collapsed across joint angle, there were decreases (p < 0.001, = 0.378) in EMG AMP from 30 to 100% time to task failure. No changes were observed, however, for the other neuromuscular responses. The subjects voluntarily reduced torque to maintain RPE = 7 for each joint angle, and we hypothesize that RPE was maintained by afferent feedback from group III/IV motor neurons and corollary discharge (efferent copy of an internal signal that develops from central motor commands). The RPE-Clamp Model may be extended to athletes recovering from injury because a self-selected exercise intensity may be perceived as more enjoyable and promote adherence.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Physical Therapy, Sports Therapy and Rehabilitation,Orthopedics and Sports Medicine,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3