Development of Microcontroller-Based Free Fall Motion Learning Materials to Increase Students’ Conceptual Understanding

Author:

Boimau Infianto,Mellu Ruth Novi Kornalia

Abstract

Students’ shortcoming in understanding various concepts of physics is often due to the lack of teaching media can promote student active participation in the learning process. This study aims to develop a valid and effective microcontroller-based physics learning materials as teaching media in enhancing conceptual understanding of free fall motion lessons. This learning materials is developed using the research and development (R&D) method. Effectiveness test of learning materials using pre-experimental research design one group pretest-posttest involve students of physics education program in STKIP SoE. Data collection techniques were done through validation sheets, observations, test questions, and questionnaire sheets. Validation of learning materials through expert testing shows that learning materials are in a valid category. The results of the study shows that learning materials have a positive effect in improving students' conceptual understanding. The effectiveness of the use of learning materials in improving students' understanding of concepts has been analyzed through the results of N-gain calculations which show a moderate score increase. Moreover, the practicality test of learning materials using a Likert scale shows that learning materials are very practical to utilize as teaching media.

Publisher

STKIP Singkawang

Subject

General Earth and Planetary Sciences,General Environmental Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A simple pendulum studied using Hall effect sensor and Arduino;PROCEEDING OF THE 1ST INTERNATIONAL CONFERENCE ON STANDARDIZATION AND METROLOGY (ICONSTAM) 2021;2022

2. Real-time data acquisition of dynamic moving objects;Journal of Physics: Conference Series;2021-03-01

3. Experimental study of determination of earth’s gravitational acceleration using the concept of free-fall motion and conservation of mechanical energy;THE 2ND SCIENCE AND MATHEMATICS INTERNATIONAL CONFERENCE (SMIC 2020): Transforming Research and Education of Science and Mathematics in the Digital Age;2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3