Microstrip patch antenna with defected ground structure for biomedical application

Author:

Islam Md. Shazzadul,Ibrahimy Muhammad I.,M. A. Motakabber S.,K. M. Zakir Hossain A.,M. Kayser Azam S.

Abstract

Proper narrowband antenna design for wearable devices in the biomedical application is a significant field of research interest. In this work, defected ground structure-based microstrip patch antenna has been proposed that can work for narrowband applications. The proposed antenna works exactly for a single channel of ISM band. The resonant frequency of the antenna is 2.45 GHz with a return loss of around -30 dB. The -10dB impedance bandwidth of the antenna is 20 MHz (2.442-2.462 GHz), which is the bandwidth of channel 9 in ISM band. The antenna has achieved a high gain of 7.04 dBi with an increase of 17.63% antenna efficiency in terms of realized gain by using defected ground structure. Three linear vector arrays of arrangement 1 2, 1 4 and 1 8 have been designed to validate the proposed antenna performances as an array. The proposed antenna is light weighted, low cost, easy to fabricate and with better performances that makes it suitable for biomedical WLAN applications.

Publisher

Institute of Advanced Engineering and Science

Subject

Electrical and Electronic Engineering,Control and Optimization,Computer Networks and Communications,Hardware and Architecture,Instrumentation,Information Systems,Control and Systems Engineering,Computer Science (miscellaneous)

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Design and Development of Dual Port Polarized Microstrip Patch Antenna for Breast Tumor Detection;2024 IEEE International Conference on Interdisciplinary Approaches in Technology and Management for Social Innovation (IATMSI);2024-03-14

2. Design and Analysis of Antenna Arrays Operating at Microwave Frequencies for Biomedical Applications;Advances in Science, Technology & Innovation;2024

3. Bended rectangular patch antenna design for wearable applications;AIP Conference Proceedings;2024

4. Design and Implementation of Microstrip Patch Antenna Using HFSS for Medical Applications;Lecture Notes in Electrical Engineering;2024

5. Design, Simulation, and Analysis of Microstrip Antenna Circular Patch High Efficiency for Radar Applications at 32 GHz;Lecture Notes in Networks and Systems;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3