Low power wake-up receiver based on ultrasound communication for wireless sensor network

Author:

Wong Yan Chiew,Tan Szi Hui,Sarban Singh Ranjit Singh,Zhang Haoyu,Syafeeza A. R.,Hamid N. A.

Abstract

Wireless sensor network (WSN) consists of base stations and sensors nodes to monitor physical and environmental conditions. Power consumption is a challenge in WSN due to activities of nodes. High power consumption is required for the main transceiver in WSN to receive communication requests all the time. Hence, a low power wake-up receiver is needed to minimize the power consumption of WSN. In this work, a low power wake-up receiver using ultrasound data communication is designed. Wake-up receiver is used to detect wake-up signal to activate a device in WSN. Functional block modelling of the wake-up receiver is developed in Silterra CMOS 130nm process technology. The performance of the wake-up receiver has been analyzed and achieving low power consumption which is 22.45μW. A prototype to demonstrate a wireless sensor node with wake-up receiver has been developed incorporating both ultrasonic and RF for internal and external communication respectively. We achieve 99.97% of power saving for 10s operation in the experimental setup for the WSN with and without wake-up receiver. Wake-up receiver used in WSN save power and prolong the lifetime of batteries and thus extending the operational lifetime of WSN.

Publisher

Institute of Advanced Engineering and Science

Subject

Electrical and Electronic Engineering,Control and Optimization,Computer Networks and Communications,Hardware and Architecture,Instrumentation,Information Systems,Control and Systems Engineering,Computer Science (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Low Power Wake-Up Receivers for Underwater Acoustic Wireless Sensor Networks;IEEE Transactions on Green Communications and Networking;2023-12

2. Power Consumption Improvements in AES Decryption Based on Null Convention Logic;International Journal of Circuits, Systems and Signal Processing;2021-04-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3