Multilayer extreme learning machine for hand movement prediction based on electroencephalography
-
Published:2020-12-01
Issue:6
Volume:9
Page:2404-2410
-
ISSN:2302-9285
-
Container-title:Bulletin of Electrical Engineering and Informatics
-
language:
-
Short-container-title:Bulletin EEI
Author:
Anam Khairul,Avian Cries,Nuh Muhammad
Abstract
Brain computer interface (BCI) technology connects humans with machines via electroencephalography (EEG). The mechanism of BCI is pattern recognition, which proceeds by feature extraction and classification. Various feature extraction and classification methods can differentiate human motor movements, especially those of the hand. Combinations of these methods can greatly improve the accuracy of the results. This article explores the performances of nine feature-extraction types computed by a multilayer extreme learning machine (ML-ELM). The proposed method was tested on different numbers of EEG channels and different ML-ELM structures. Moreover, the performance of ML-ELM was compared with those of ELM, Support Vector Machine and Naive Bayes in classifying real and imaginary hand movements in offline mode. The ML-ELM with discrete wavelet transform (DWT) as feature extraction outperformed the other classification methods with highest accuracy 0.98. So, the authors also found that the structures influenced the accuracy of ML-ELM for different task, feature extraction used and channel used.
Publisher
Institute of Advanced Engineering and Science
Subject
Electrical and Electronic Engineering,Control and Optimization,Computer Networks and Communications,Hardware and Architecture,Instrumentation,Information Systems,Control and Systems Engineering,Computer Science (miscellaneous)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献